• Title/Summary/Keyword: Chapman-Richards model

Search Result 18, Processing Time 0.111 seconds

Estimation of Diameter and Height Growth in Pinus thunbergii Stands Using Linear and Nonlinear Growth Functions (곰솔임분(林分)의 직경(直徑) 및 수고생장(樹高生長) 추정(推定)에 관한 연구(硏究))

  • Park, Myeong Sookn;Chung, Young Gwann
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.47-54
    • /
    • 1999
  • To estimate optimal tree diameter and height growth function in Pinus thunbergii stands with site index of 12 class, quoted from two linear models of linear transformation(1) and linear transformation (2) and four non-linear models of exponential, Gompertz, Chapman-Richards, and Weibull etc.. Analyzed correlation among the estimated tree diameter and height by these function models, and observed diameter and height growth were compared. In the results of tree diameter and height growth estimation by stand age, non-linear models showed better appropriation than linear model and Chapman-Richards model was most fitted for tree height growth but few, if any, differences among their nonlinear models. Therefore, it is consider to be much more study about non-linear model to estimate tree diameter and height growth in the actual stands hereafter.

  • PDF

Height Growth Models for Pinus thunbergii in Jeju Island

  • Park, Gildong;Lee, Daesung;Seo, Yeongwan;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • Height growth models for Pinus thunbergii in Jeju Island were developed in this study using four widely used nonlinear growth models; Exponential, Modified Logistic, Chapman-Richards, and Weibull. All functions were found to be significant at the 1% level. Chapman-Richards model for height-DBH allometry and Weibull model for height-age allometry was chosen as the best model on the all validation. All the model curves showed the similar pattern. Additionally, there was no abnormal pattern when the previous studies were compared. Therefore, these models are highly expected to be used to estimate the tree height using DBH or age for Pinus thunbergii especially in Jeju Island.

Estimation of Site Index for Larix kaempferi and Pinus koraiensis in Gangwon and North Gyeongsang Provinces

  • Lee, Daesung;Seo, Yeongwan;Park, Gildong;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.202-206
    • /
    • 2015
  • Site index curves were developed for Larix kaempferi and Pinus koraiensis in Gangwon and North Gyeongsang provinces in Korea. For the development of site index, Schumacher and Chapman-Richards model were applied using the data collected from 2012 to 2014. Base age was set to 40 years for Larix kaempferi and Pinus koraiensis in site index of this study. Coefficient of determination and root mean square error of site index models were provided by species, and the models were compared with the previous studies to check the suitability. Overall, site index models developed in this study fitted in the current data well. Thus, the site indexes are considered to be properly used in Gangwon and North Gyeongsang provinces.

Development of Site Index Model for Cryptomeria japonica Stands by the Current Growth Characteristics in South Korea (현실임분 생장특성을 반영한 삼나무 지위지수 추정 모델 개발)

  • Kim, Hyun-Soo;Jung, Su-Young;Lee, Kwang-Soo;Lee, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.793-801
    • /
    • 2022
  • This study was carried out to provide basic data for logical forest management by developing a site index curve reflecting the current growth characteristics of Cryptomeria japonica stands in Korea. The height growth model was developed using the Chapman-Richards, Schumacher, Gompertz, and Weibull algebraic difference equations, which are widely used in growth estimation, for data collected from 119 plots through the 7th National Forest Inventory and stand survey. The Chapman-Richards equation, with the highest model fit, was selected as the best equation for the height growth model, and a site index curve was developed using the guide curve method. To compare the developed site index curve with that on the yield table, paired T-tests with a significance level of 5% were performed. The results indicated that there were no significant differences between the site index curve values at all ages, and the p-value was smaller after the reference age than before. Therefore, the site index curve developed through this study reflects the characteristics of the changing growth environment of C. japonica stands and can be used in accordance with the site index curve on the current yield table. Thus, this information can be considered valuable as basic data for reasonable forest management.

Analysis of Growth and Carbon Storage for Quercus variabilis Stands in Yangpyeong and Gangneung Regions (양평지역과 강릉지역 굴참나무림의 생장 및 탄소저장량 분석)

  • Seo, Yeon-Ok;Park, Sang-Moon;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • This study was conducted to develop growth model and to estimate carbon storage of Quercus variablis stands. The study sites were located in the Yangpyeong and Gangneung regions. A total of 30 sample trees were harvested for data collection. According to the results of the application of Chapman-Richards model in this study, the coefficient of determination($R^2$) for the DBH-height model in Yangpyeong region was 97% while 94% in Gangneung regions. For the age-height relationship, the $R^2$ in Yangpyeong regions was 99% while 94% in Gangneung regions. The total carbon stored in Yangpyeong region was $83.0Mg\;C\;ha^{-1}$ while $137.3Mg\;C\;ha^{-1}$ in Gangneung.

Nonlinear Height-DBH Growth Models for Larix kaempferi in Gangwon and North Gyeongsang Province

  • Lee, Daesung;Choi, Jungkee;Seo, Yeongwan;Kim, Euigyeong
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.201-207
    • /
    • 2014
  • This study was conducted to estimate the best-fit nonlinear height-DBH growth models for Larix kaempferi in Gangwon and North Gyeongsang province in South Korea. Exponential, Modified Logistic, Chapman-Richards, and Weibull function were used for estimating height-DBH models. To evaluate the selected models, $R^2$, RMSE, MD, MAD, and residual plots were performed in each model. Also, the coefficients and patterns in models of the previous studies were compared with those in this study. The result showed that Weibull equation was found to be the best-fit model with $R^2$=0.9837, RMSE=2.6133, MD=0.0089, and MAD=2.0896. All model parameters in our study had similar values to those in the previous models except for asymptotic parameter a. Our research result showed that Gangwon and North Gyeongsang province were superior to other provinces with regard to height growth for Larix kaempferi.

Developing Dominant Tree Height Growth Curve and Site Index Curves for Pinus densiflora and Chamaecyparis obtusa Grown in Jeolla-do (전라도 지역 소나무와 편백에 대한 수고생장모델 및 지위지수곡선 개발)

  • Park, Hee-Jung;Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.364-371
    • /
    • 2019
  • This study was conducted to provide the basic information for a reasonable forest management plan and sustainable forest management by developing a dominant tree height growth model using diameter at breast height (DBH) and site index curves for Pinus densiflora and Chamaecyparis obtusa growing in Jeolla-do. The altitude, slope, orientation, soil type, height and DBH of a dominant tree, and the ages of trees were measured for 3055 Pinus densiflora trees (611 plots) and 3345 Chamaecyparis obtusa trees (699 plots), and these data were used to develop a customized afforestation map. In the dominant tree height growth model, the relationship to DBH was used in the Petterson, Michailow, and log equations. Also, a dominant tree height growth model in relationship to age used the Chapman-Richards, Schumacher, and Gompertz equations. The Petterson equation, which has a lower mean square error, was used to model dominant tree height growth in relationship to DBH. In the model of dominant tree height growth in relationship to age, three kinds of equations were considered to have little statistical difference. Therefore, the Chapman-Richards equation was chosen for modeling on the national level. Thirtyyears was used as the base age, which is an important factor for estimating the site index curves. In the results, a more varied range of site index family curves with 6-18 was developed for Pinus densiflora, and with 6-22 for Chamaecyparis obtusa. As the new site index curves indicated influences on growth of Pinus densiflora and Chamaecyparis obtusa, a reasonable forest management plan will be possible in the future for Jeolla-do.

The Development of Growth and Yield Models for the Natural Broadleaved-Korean Pine Forests in Northeast China (중국(中國) 동북부(東北部) 지방(地方) 활엽수(闊葉樹)-잣나무 천연림(天然林)의 생장(生長) 모델과 수확(收穫) 모델 개발(開發))

  • Li, Fengri;Choi, Jung-Kee;Kim, Ji-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.5
    • /
    • pp.650-662
    • /
    • 2001
  • The growth and yield models for five different kinds of natural forest types were systemically developed in the natural Broadleaved-Korean pine Forests in Northeast China. The data were collected from 359 temporary plots and 58 permanent plots with area ranged from 0.06 ha to 1.0 ha, ranging in stand age from 43 to 364 years. The Site Class Index (SCI) was introduced to evaluate site quality and the Crown Competition Factor (CCF) was selected as a measure of stand density for the mixed natural forest. The Chapman-Richards function was adopted to develop SCI equation and height-diameter curve. The Schumacher growth function was selected as base model to develop the DBH, basal area, and stand volume growth models by using re-parameterized method. In modeling mean DBH and basal area growth, it was found that the asymptotic parameter A of Schumacher function was exponentially related to site quality (SCI) and stand density (CCF). The rate parameter k was related to stand density and it was independent of SCI. Several validation measures for predicted stand variables were evaluated in the growth and yield models using independent data sets. The results indicated that relative mean errors (RME) in predicted stand attributes were less than ${\pm}5%$ and the estimated precision values of the stand variables were all greater than 95%.

  • PDF

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Spatial Estimation of the Site Index for Pinus densiplora using Kriging (크리깅을 이용한 소나무림 지위지수 공간분포 추정)

  • Kim, Kyoung-Min;Park, Key-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.467-476
    • /
    • 2013
  • Site index information given from forest site map only exist in the sampled locations. In this study, site index for unsampled locations were estimated using kriging interpolation method which can interpolate values between point samples to generate a continuous surface. Site index of Pinus densiplora in Danyang area were calculated using Chapman-Richards model by plot unit. Then site index for unsampled locations were interpolated by theoretical variogram models and ordinary kriging. Also in order to assess parameter selection, cross-validation was performed by calculating mean error (ME), average standard error (ASE) and root mean square error (RMSE). In result, gaussian model was excluded because of the biggest relative nugget (37.40%). Then spherical model (16.80%) and exponential model (8.77%) were selected. Site index estimates of Pinus densiplora throughout the entire area in Danyang showed 4.39~19.53 based on exponential model, and 4.54~19.23 based on spherical model. By cross-validation, RMSE had almost no difference. But ME and ASE from spherical model were slightly lower than exponential model. Therefore site index prediction map from spherical model were finally selected. Average site index from site prediction map was 10.78. It can be expected that regional variance can be considered by site index prediction map in order to estimate forest biomass which has big spatial variance and eventually it is helpful to improve an accuracy of forest carbon estimation.