• Title/Summary/Keyword: Channel-type Microstructure

Search Result 6, Processing Time 0.035 seconds

Microstructures and Mechanical Behavior of 2024 Al Alloys Deformed by Equal Channel Angular Pressing (2024 Al 합금의 ECAP 공정에 따른 미세조직 변화와 강도특성)

  • Kim, Seon-Hwa;Choi, Yong-Lak
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.68-74
    • /
    • 2006
  • 2024 Al alloys were severely deformed by equal channel angular pressing(ECAP) to obtain an ultrafine grain structure. The more deformation amount increased, the more grain size decreased. Most of the grain structure were changed from elongated to equiaxed shape with increasing pass number. The morphology of S' phases was also changed from rod-type to spherical type. The grain size of 6 passed specimen was 100 to 200 nm, and the size of S' phases was about 10 nm in the microstructure. XRD measurements have revealed that the texture formed by plastic deformation disappeared in the 6 passed specimen. SP test results described that the start of crack propagation occurred at the transition zone between plastic bending and membrane stretching because of small elongation. The maximum strength of ECA pressed specimen increased 1.9 GPa to 2.9 GPa with increasing pass number.

New Fabrication Process of Vertical-Type Organic TFTs for High-Current Drivers

  • Kudo, Kazuhiro;Nakamura, Masakazu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.307-309
    • /
    • 2009
  • We have fabricated vertical-type organic transistors (static induction transistors; SITs) with built-in nano-triode arrays formed in parallel by a colloidal-lithography technique. Using this technique, we could fabricate a microstructure in a lateral direction within a large-scale organic device without relying on photolithography. The organic transistor showed low operating voltages, high current output, and large transconductance.

  • PDF

Densification and Conolidation of Powders by Equal Channel Angular Pressing

  • Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Sun-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.978-979
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth. ECAP (Equal channel angular pressing) was used for the powder consolidation. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders.

  • PDF

Micro Mold Fabrication and the Micro Patterning by RTP Process (Micro Mold 제작 및 RTP 공정에 의한 미세 패턴의 성형)

  • Kim H. K.;Ko Y. B.;Kang J. J.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • RTP(Rapid Thermal Pressing) is to fabricate desired pattern on polymer substrate by pressing patterned mold against the substrate heated around glass transition temperature. For a successful RTP process, the whole process including heating, molding, cooling and demolding should be conducted 'rapidly' as possible. As the RTP process is effective in replicating patterns on flat large surface without causing shape distortion after cooling, it is being widely used for fabricating various micro/bio application components, especially with channel-type microstructures on surface. This investigation finally aims to develop a RTP process machine for mass-producing micro/bio application components. As a first step for that purpose, we intended to examine the technological difficulties for realizing mass production by RTP process. Therefore, in the current paper, 4 kinds of RTP machines were examined and then the RTP process was conducted experimentally for PMMA film by using one of the machines, HEX 03. The micro-patterned molds used for RTP experiment was fabricated from silicon wafer by semi-conduct process. The replicated micro patterns on PMMA films were examined using SEM and the causes of defect observed in the replicated patterns were discussed.

  • PDF

The Effect of Post-Bond Heat Treatment on Tensile Property of Diffusion Bonded Austenitic Alloys (확산 접합된 오스테나이트계 재료의 인장특성에 미치는 후열처리의 영향)

  • Hong, Sunghoon;Kim, Sung Hwan;Jang, Changheui;Sah, Injin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1221-1227
    • /
    • 2015
  • Diffusion bonding is the key manufacturing process for the micro-channel type heat exchangers. In this study, austenitic alloys such as Alloy 800HT, Alloy 690, and Alloy 600, were diffusion bonded at various temperatures and the tensile properties were measured up to $650^{\circ}C$. Tensile ductility of diffusion bonded Alloy 800HT was significantly lower than that of base metal at all test temperatures. While, for Alloy 690 and Alloy 600, tensile ductility of diffusion bonded specimens was comparable to that of base metals up to $500^{\circ}C$, above which the ductility became lower. The poor ductility of diffusion bonded specimen could have caused by the incomplete grain boundary migration and precipitates along the bond-line. Application of post-bond heat treatment (PBHT) improved the ductility close to that of base metals up to $550^{\circ}C$. Changes in tensile properties were discussed in view of the microstructure in the diffusion-bonded area.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.