• 제목/요약/키워드: Channel assignment problem

검색결과 64건 처리시간 0.026초

셀룰라 이동통신 제어 시스템에서 색채화 문제에 의한 채널할당 (A Channel Assignment by Graph Coloring Problem in Cellular Mobile Communication Control System)

  • 장성환;라상동
    • 한국통신학회논문지
    • /
    • 제19권9호
    • /
    • pp.1658-1667
    • /
    • 1994
  • 셀룰라 이동통신 제어 시스템에서 고도의 스펙트럼 효과를 도출해 내기 위해 셀에서 호에 대한 채널을 할당하는 것은 한정된 주파수 대역폭내에서 중요한 문제이다. 이동통신 제어 시스템에 있어서는 스펙트럼 효과를 그래프 이론의 색채화 문제로 연관 시킬 수 있다. 본 논문에서는 셀룰라 이동통신 제어시스템의 그래프 이론을 이용하여 채널 오프셋 구조를 제안하고, 그래프 색채화 문제와 관련된 채널 오프셋 구조의 색체화 대역폭을 수식화 하였다. 수식화 된 채널할당 문제로부터 채널 구성에 따른 셀 설계와 보다 효율적인 주파수 스펙트럼의 최적 채널 오프셋을 연구하여 전체 스펙트럼 대역폭에 대한 상한치와 하한치를 부여 한다.

  • PDF

A Dynamic Channel Allocation Algorithm Based on Time Constraints in Cellular Mobile Networks

  • Lee Seong-Hoon
    • International Journal of Contents
    • /
    • 제1권2호
    • /
    • pp.31-34
    • /
    • 2005
  • The new realtime applications like multimedia and realtime services in a wireless network will be dramatically increased. However, many realtime services of mobile hosts in a cell cannot be continued because of insufficiency of useful channels. Conventional channel assignment approaches didn't properly consider the problem to serve realtime applications in a cell. This paper proposes a new realtime channel assignment algorithm based on time constraint analysis of channel requests. The proposed algorithm dynamically borrows available channels from neighboring cells. It also supports a smooth handoff which continuously serves realtime applications of the mobile hosts.

  • PDF

FDMA 무선통신 네트워크에서 채널할당을 위한 HGLS 알고리듬 (Hybrid Genetic and Local Search (HGLS) Algorithm for Channel Assignment in FDMA Wireless Communication Network)

  • 김성수;민승기
    • 산업공학
    • /
    • 제18권4호
    • /
    • pp.504-511
    • /
    • 2005
  • The NP-hard channel assignment problem becomes more and more important to use channels as efficiently as possible because there is a rapidly growing demand and the number of usable channel is very limited. The hybrid genetic and local search (HGLS) method in this paper is a hybrid method of genetic algorithm with no interference channel assignment (NICA) in clustering stage for diversified search and local search in tuning stage when the step of search is near convergence for minimizing blocking calls. The new representation of solution is also proposed for effective search and computation for channel assignment.

Joint Routing and Channel Assignment in Multi-rate Wireless Mesh Networks

  • Liu, Jiping;Shi, Wenxiao;Wu, Pengxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2362-2378
    • /
    • 2017
  • To mitigate the performance degradation caused by performance anomaly, a number of channel assignment algorithms have been proposed for multi-rate wireless mesh networks. However, network conditions have not been fully considered for routing process in these algorithms. In this paper, a joint scheme called Multi-rate Dijkstra's Shortest path - Rate Separated (MDSRS) is proposed, combining routing metrics and channel assignment algorithm. In MDSRS, the routing metric are determined through the synthesized deliberations of link costs and rate matches; then the rate separated channel assignment is operated based on the determined routing metric. In this way, the competitions between high and low rate links are avoided, and performance anomaly problem is settled, and the network capacity is efficiently improved. Theoretical analysis and NS-3 simulation results indicate that, the proposed MDSRS can significantly improve the network throughput, and decrease the average end-to-end delay as well as packet loss probability. Performance improvements could be achieved even in the heavy load network conditions.

멀티 라디오 멀티 채널 무선 메쉬 네트워크를 위한 클러스터 기반 최소 간섭 채널 할당 (Cluster-based Minimum Interference Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks)

  • 차시호;류민우;조국현
    • 디지털산업정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.103-109
    • /
    • 2010
  • Total performance is improved by minimizing the channel interference between links in wireless mesh networks (WMNs). The paper refines on the CB-CA [1] to be suitable for multi-radio multi-channel (MRMC) WMNs. The CB-CA is the cluster-based channel assignment algorithm for one radio three channel WMN based on IEEE 802.11b/g. The CB-CA does not perform the channel scanning and the channel switching between the cluster heads (CHs) and the edge gateway nodes (EGs). However, the use of co-channel for links between CHs and EGs brings the problem of channel interference among many nodes. We propose and evaluate an improved CB-CA algorithm to solve this problem in MRMC WMNs. The proposed algorithm discriminates between transmission channel and receive channel and assigns channels to each interface randomly and advertises this information to neighbor clusters in order to be assigned no-interference channel between clusters. Therefore, the proposed algorithm can minimize the interference between clusters and also improve QoS, since it can use multiple interfaces and multiple channels.

다양한 환경에 적용이 가능한 UHGA 채널 할당 방식 (UHGA channel assignment can be applied under various environments)

  • 허서정;손동철;김창석
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-493
    • /
    • 2013
  • 스마트 기기의 보급 확대로 다양한 콘텐츠를 서비스하는 이동 단말기의 한정된 채널 할당 문제가 심화되고 있다. 이동통신망에서는 이동국에서 채널할당 요청이 있을 때 교환국에서 각 기지국에 속한 이동국에 채널을 할당한다. 이 때 한정된 채널을 효과적으로 할당하기 위한 다양한 방식들이 제안되고 있는데, 여기서는 하이브리드 채널 할당에 유전 알고리즘을 이용한 UHGA(Universal Hybrid Channel Assignment using Genetic Algorithm)이 농촌 지역이나 도심 지역과 같은 다양한 환경의 범용 망에 적용되어 효율성이 있음을 시뮬레이션을 통해 검증한다.

채널 고정 할당 방식에서 채널 할당 순서 최적화(응용 부문) (Channel Assignment Sequence Optimization under Fixed Channel Assignment Scheme)

  • 한정희;이영호;김성인;김영진
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.288-300
    • /
    • 2006
  • In this paper, we consider a channel ordering problem that seeks to minimize the total interference in mobile radio networks. If a base station receives connection request from a mobile user, one of the empty channels that are fixed to the base station is assigned to the mobile user. Among several channels available, we can choose one that seems to make least interference with other channels assigned to adjacent base stations. However, a pair of channels that are not separated enough do not generate interference if both of them are not simultaneously used by mobile users. That is, interference between channels may vary depending on the channel assignment sequence for each base station and on the distribution of mobile users. To find a channel assignment sequence that seems to generate minimum interference, we develop an optimization model considering various scenarios of mobile user distribution. Simulation results show that channel assignment sequence determined by the scenario based optimization model significantly reduces the interference provided that scenarios and interference costs are properly generated.

  • PDF

A Decomposition Approach for Fixed Channel Assignment Problems in Large-Scale Cellular Networks

  • Jin, Ming-Hui;Wu, Eric Hsiao-Kuang;Horng, Jorng-Tzong
    • Journal of Communications and Networks
    • /
    • 제5권1호
    • /
    • pp.43-54
    • /
    • 2003
  • Due to insufficient available bandwidth resources and the continuously growing demand for cellular communication services, the channel assignment problem has become increasingly important. To trace the optimal assignment, several heuristic strategies have been proposed. So far, most of them focus on the small-scale systems containing no more than 25 cells and they use an anachronistic cost model, which does not satisfy the requirements ity. Solving the small-scale channel assignment problems could not be applied into existing large scale cellular networks' practice. This article proposes a decomposition approach to solve the fixed channel assignment problem (FCAP) for large-scale cellular networks through partitioning the whole cellular network into several smaller sub-networks and then designing a sequential branch-and-bound algorithm that is made to solve the FCAP for them sequentially. The key issue of partition is to minimize the dependences of the sub-networks so that the proposed heuristics for solving smaller problems will suffer fewer constraints in searching for better assignments. The proposed algorithms perform well based on experimental results and they were applied to the Taiwan Cellular Cooperation (TCC) in ChungLi city to find better assignments for its network.

채널할당을 고려한 다중계층 셀룰러 네트워크 설계 (Hierarchical Cellular Network Design with Channel Allocation)

  • 박현수;이상헌
    • 한국국방경영분석학회지
    • /
    • 제34권2호
    • /
    • pp.63-77
    • /
    • 2008
  • 제한된 주파수 범위 내에서 무선통신에 대한 수요증가에 따라 중계소 설치 및 채널할당 문제가 갈수록 중요시되고 있다. 최소한의 주파수 범위를 가지고 간접이 없는 채널을 할당하는 문제는 NP-hard 문제이다. 다중계층 셀룰러 네트워크는 무선통신의 수요가 늘어나고, 서비스 질 향상 요구의 증가에 따라 주목받고 있는 설계 방법이다. 다중계층 셀룰러 네트워크는 큰 도시에 적용되는 방법으로서 소비자의 이동속도에 따라 서로 다른 계층에서 관리하고 소비자에게 안정된 서비스를 제공한다. 본 논문의 유전자 알고리즘을 이용한 다중계층 설계는 지존의 2계층 방식과 달리 3계층(macro, micro, pico) 방법을 적용하며, EMC(Electromagnetic Compatibility Constraints)를 적응하여 현실성을 더욱 증가하였다. 후보지 선정 개수는 $15{\sim}40$개까지 적응하며, 72개의 데이터를 적용하여 알고리즘을 실험하여 수요자 수를 총 수요의 90%이상으로 끌어 올려 현실성을 강화시켰다.

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.