• Title/Summary/Keyword: Channel Loss

Search Result 998, Processing Time 0.024 seconds

A Study on Electronic Circuit for Liwe-Time Correction in Multi-Channel Analyzer : Survey and Analysis (방사선 스펙트럼 계측기 (Multi-Channel Analyzer)의 Live-Time 보상회로에 관한 연구)

  • Hwang, I.K.;Kwon, K.H.;Song, S.J.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.784-791
    • /
    • 1995
  • This paper describes the counting-loss problem for radiation measurement Multi-channel analyzers and spectrometers adopt various techniques for compensation for counting-losses in process-ing the radiation pulses from a detector. Researchers hate tried to seek the best solution for the problem. However, any absolute solution has not been reached and vendors of radiation instruments use their own algorithms individually. This survey explains the various compensation algorithms with electronic implementation approach. Shortcomings and merits of each algorithm are also reviewed and a direction is suggested of the recommendable development strategy for counting-loss compensation.

  • PDF

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

Layer based Cooperative Relaying Algorithm for Scalable Video Transmission over Wireless Video Sensor Networks (무선 비디오 센서 네트워크에서 스케일러블 비디오 전송을 위한 계층 기반 협업 중계 알고리즘*)

  • Ha, Hojin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2022
  • Recently, in wireless video sensor networks(WVSN), various schemes for efficient video data transmission have been studied. In this paper, a layer based cooperative relaying(LCR) algorithm is proposed for minimizing scalable video transmission distortion from packet loss in WVSN. The proposed LCR algorithm consists of two modules. In the first step, a parameter based error propagation metric is proposed to predict the effect of each scalable layer on video quality degradation at low complexity. In the second step, a layer-based cooperative relay algorithm is proposed to minimize distortion due to packet loss using the proposed error propagation metric and channel information of the video sensor node and relay node. In the experiment, the proposed algorithm showed that the improvement of peak signal-to-noise ratio (PSNR) in various channel environments, compared to the previous algorithm(Energy based Cooperative Relaying, ECR) without considering the metric of error propagation.The proposed LCR algorithm minimizes video quality degradation from packet loss using both the channel information of relaying node and the amount of layer based error propagation in scalable video.

Development of a Performance Prediction Method for Centrifugal Compressor Channel Diffusers

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1144-1153
    • /
    • 2002
  • A hybrid performance prediction method is proposed in the present study. A channel diffuser is divided into four subregions: vaneless space, semi-vaneless space, channel, and channel exit region. One-dimensional compressible core flow and boundary layer calculation of each region with an incidence loss model and empirical correlation of residuary pressure recovery coefficient of a channel predict the performance of diffusers. Three channel diffusers are designed and tested for validating the developed prediction method. The pressure distributions from an impeller exit to the channel diffuser exit are measured and discussed for various operating conditions from choke to nearly surge conditions. The strong non-uniform pressure distribution which is caused by impeller-diffuser interaction is obtained over the vaneless and semi-vaneless spaces. The predicted performance shows good agreement with the measured performance of diffusers at a design condition as well as at off-design conditions.

MKIPS: MKI-based protocol steganography method in SRTP

  • Alishavandi, Amir Mahmoud;Fakhredanesh, Mohammad
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.561-570
    • /
    • 2021
  • This paper presents master key identifier based protocol steganography (MKIPS), a new approach toward creating a covert channel within the Secure Real-time Transfer Protocol, also known as SRTP. This can be achieved using the ability of the sender of Voice-over-Internet Protocol packets to select a master key from a pre-shared list of available cryptographic keys. This list is handed to the SRTP sender and receiver by an external key management protocol during session initiation. In this work, by intelligent utilization of the master key identifier field in the SRTP packet creation process, a covert channel is created. The proposed covert channel can reach a relatively high transfer rate, and its capacity may vary based on the underlying SRTP channel properties. In comparison to existing data embedding methods in SRTP, MKIPS can convey a secret message without adding to the traffic overhead of the channel and packet loss in the destination. Additionally, the proposed covert channel is as robust as its underlying user datagram protocol channel.

A Numerical Study on Improving the Thermal Hydraulic Performance of Printed Circuit Heat Exchanger Using the Supercritical Carbon Dioxide (초임계 이산화탄소를 작동유체로 한 PCHE의 열수력 성능 향상을 위한 수치해석적 연구)

  • Park, Bo Guen;Kim, Dae Hyun;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.779-786
    • /
    • 2015
  • The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from $1.41{\times}10^{-4}$ to $2.48{\times}10^{-4}kg/s$. The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

A Study on the Terrestrial DTV Channel Model (지상파 DTV 채널 모델에 관한 연구)

  • Lee, Seung-Youn;Na, Chae-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper we proposed channel models for terrestrial ATSC (Advanced Television Systems Committee) DTV (Digital Television) system in South Korea. For the purpose of this model, we research on propagation model involved in terrestrial DTV system and analyze out field test data of terrestrial DTV broadcasting carried out in korean Broadcasting System. Using the measured values of received field strength, newly proposed Path-loss models have more correctly than that of conventional Path-loss models. This models can be utilized usefully for the efficient ATSC DTV system implementation requiring accurate link-budget calculation

Adsorption Reactions of Trimethylgallium and Arsine on H/Si(100)-2x1 Surface

  • Cho, Ji-Eun;Ghosh, Manik Kumer;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1805-1810
    • /
    • 2009
  • The adsorptions of trimethygallium (TMG) and arsine (As$H_3$) on H/Si(100)-2x1 surface were theoretically investigated. In the case of TMG adsorption, methane loss reaction, surface methylation, hydrogen loss reaction and ring closing reaction channels were found. The mechanism of As$H_3$ adsorption on the surface was also identified. Among these, the methane loss reaction depositing –Ga(C$H_3)_2$ was found to be the major channel due to its low barrier height and the large exothermicity. The surface methylation reaction is the second most favorable channel. In contrast, arsine turned out to be less reactive on the surface, implying that Arsine surface reaction would be the rate limiting step in the overall ALD process.

Estimation of Head Loss Coefficient Empirical Formulas Using Model Experimental Results in a 90° Angle Dividing Channel Junction (90도 각도를 갖는 분기수로에서 모형실험결과를 이용한 손실계수 경험식 산정)

  • Park, Inhwan;Seong, Hoje;Kim, Hyung-Jun;Rhee, Dong Sop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.989-999
    • /
    • 2017
  • In this study, hydraulic experimental studies were conducted to estimate the empirical formulas of loss coefficient, which is necessary to calculate the energy loss occurred in the dividing channel junction of sewer system. The experimental apparatus was consisted of two outflow conduit with a $90^{\circ}$ angle to the inlet conduit, and the pressure and velocity heads are measured to analyze the energy losses in the branch. The measurements of the hydraulic grade line show that the hydraulic grade line was steeply descended at the dividing point due to the head loss, and the decreasing amount of velocity head increased with the increase of flowrate ratio. The head loss exponentially increased in the outlet with larger runoff as the increase of flowrate ratio and Froude number, and the head loss coefficient also increased. On the other hands, the head loss coefficients decreased in the outlet with smaller runoff as the increase of the flowrate ratio and Froude number. Using the experimental results, the empirical formulas of loss coefficient was suggested for each outlet, and the error of empirical formula was 3.91 and 5.19%, respectively. Furthermore, the total head loss coefficient calculated by the two empirical formulas was compared with the experimental results, and the error was 3.62%.