• 제목/요약/키워드: Channel Loss

검색결과 990건 처리시간 0.19초

경천가뭄지역 농업용수 공급량의 수로손실 분석 (Analysis of Channel Water Loss of the Agricultural Water Supply in a Gyeongcheon Drought Area)

  • 조건호;문진경;최경숙
    • 한국농공학회논문집
    • /
    • 제62권2호
    • /
    • pp.53-62
    • /
    • 2020
  • The purpose of this study is to estimate the channel water loss of agricultural water supply in the command areas belong to Yechon irrigation channel of Gyeongcheon reservoir located Mungyeong-si, which area experienced a severe drought in 2015. The channel water loss was estimated by comparison of the irrigation water requirements (IWR) and agricultural water supply of the field data from 2012 to 2015. Further analysis was conducted to define the conveyance loss estimated based on the leakage holes and illegal pumping spots investigated through the field survey, and the distribution loss obtained by subtracting conveyance loss from the channel water loss. The annual rainfall decreased gradually, but the contribution of effective rainfall, available rain water to crop, increased to IWR during the study period. These phenomena resulted in the increase of agricultural water supply, and hence made greater the channel water loss simultaneously. The average channel water losses estimated as 36.8 % with 7.1 % of the conveyance loss and 29.7 % of distribution loss respectively. The distribution loss seems to be related to total number of rainy days, and irrigation schedules, while the conveyance loss was caused by irrigation channel aging conditions and illegal intake problems. In order to achieve sustainable agricultural water resources, the channel water loss needs to be reduced through the restoration of aged irrigation facilities and effective water managements in the fields.

재생형 연료펌프의 채널 면적 변화가 성능 특성에 미치는 영향에 대한 수치해석적 연구 (Numerical Study of Channel Area Effects on the Performance Characteristics of Regenerative Type Fuel Pump)

  • 이경용;최영석;손광은
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.41-45
    • /
    • 2007
  • The effects of channel area on the performance of regenerative type fuel pump were numerically studied by commercial CFD code (ANSYS CFX-10). To examine the effects of channel area, the shapes of the side channel and blade were simplified. The channel area affected the flow characteristics of the internal recirculation flow between the side channel and the blade groove and also made a difference in the overall performance. These loss mechanism with circulation flow were adopted as a loss coefficient in the performance prediction program. The loss coefficient was newly derived from the results of calculations with different channel area, and compared with the experimental results in the reference paper and used to modify the performance prediction program. The circulation flow characteristics with different channel area, which is related with loss mechanism, were also discussed with the results of 3-dimensional flow calculations.

가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석 (CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR)

  • 인왕기;신창환;박주용;오동석;이치영;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

Iris 전송손실 측정값을 이용한 이중모드 협대역 도파관 채널여파기의 설계 및 제작 (Design and implementation of dual-mode narrow-band waveguide channel filter using measured iris transmission loss data)

  • 정근욱;이재현
    • 전자공학회논문지A
    • /
    • 제32A권6호
    • /
    • pp.19-28
    • /
    • 1995
  • In this paper, measured iris transmission loss data and simulated data by using 3-dimension full-wave analysis S/W are presented and compared with Marcuvitz's theory. And by using measured iris data, dual-mode narrow-band channel filters can be successfully implemented. This paper shows that there is severe difference between the transmission loss of iris calculated by using Marcuvitz's equation to calculate iris dimension, if the length of slot iris is longer than .lambda./.pi., and in the long urn the response of channel filter is distorted. Experimental result shows that the characteristic response of implemented channel filter by using the iris transmission loss graph presented here matches well the design specfications. In conclusion, iris transmission loss measurement method will be very useful to design channel filter.

  • PDF

냉각채널의 각도와 직경 변화에 따른 채널 내 압력 손실에 관한 수치적 연구 (Numerical Study on the Pressure Loss for Various Angles and Diameters of Cooling Channel)

  • 박진;이현섭;김홍집;안규복
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.87-95
    • /
    • 2018
  • 냉각채널에서의 압력 손실을 수치적으로 연구하기 위하여 채널의 축 방향에 대한 각도, 채널 내부의 유체의 유속, 채널의 직경을 변화시키며 수치해석을 진행하였다. 채널의 축 방향에 대한 각도 변화에 따라서 압력 손실은 큰 변화가 없었다. 하지만 일반적으로 알려진 대로 채널의 직경이 커지면 압력손실이 감소하고, 유체의 유속이 느려지면 압력손실이 감소하는 경향은 두드러지게 나타났다. 이러한 결과는 무차원화 하여 정량화하였고, 기존 채널내부의 압력손실에 대한 경험식과 비교하여 기존 경험식의 타당성을 확인하였다. 본 연구에서 획득한 정보는 향후 냉각채널을 설계할 때 압력손실을 고려함에 있어 도움이 될 것으로 판단된다.

흙 수로에 대한 삼수손실량 추정에 관한 실험적 연구 (Experimental Study on Seepage Losses in Earth Channel)

  • 정하우;유한열
    • 한국농공학회지
    • /
    • 제15권1호
    • /
    • pp.2853-2877
    • /
    • 1973
  • Models of cross-sections and channels were made in order to measure seepage losses. Cross-sections were made of sand, sandy clay loam and loam, their thicknesses being 30cm and 40cm, respectively. Flow depths kept in the cross-sections were 4cm, 6cm, 8cm and 10cm. Straight and curved channel models were provided so as to measure seepage losses, when constant water depths maintained at the heads of the channels were 7.3cm and 5.7cm, respectively. The results obtained in this experiment are presented as follows: 1) A cumulative seepage loss per unit length at a point in the channel varies in accordance with time and flow depth. The general equation of cumulative seepage loss may be as follows(Ref. to Table V.25): $$q_{cum}=\int_{o}^aq(a)dt+\int_a^bq(b)dt+\int_b^tq(c)dt$$ 2) In case that the variation of water depth through the channel is slight, the total seepage loss may be computed by applying the following general equation: $$\={q}_{cum}{\cdot}x=\int_o^tq_{cum}\frac{{\partial}x}{{\partial}t}dt$$ 3) Because seepage loss varies considerably according to water depth in case that the variation of flow depth through the channel is great, seepage loss should be computed by taking account of the change of flow depth. 4) The relation between time and traveling distance of water flow may be presented as the following general equation(Ref. to Table V.29): $$x=pt^r$$ 5) The ratios of the seepage losses of the straight channel to the curved channel are 1:1.03 for a flow depth of 7.3cm and 1:1.068 for that of 5.7cm. 6) The ratios of the seepage losses occurring through the bottom to those through the inclined plane in the channel cross-section are 1:2.24 for a water depth of 8cm and 1:2.47 for a depth of 10cm in case that soil-layer is 30cm in thickness. Similarly, those ratios are 1:2.62 and 1:2.93 in case of a soil-layer thickness of 40cm(Ref. to Table V.5).

  • PDF

다중모드 간섭결합기와 광도파로열로 구성된 저손실 NxN광도파로 격자 파장 라우터의 설계 (Design of a low loss NxN waveguide grating router composed of multimode interference couplers and arrayed waveguide grating)

  • 문성욱;정영철
    • 전자공학회논문지D
    • /
    • 제34D권7호
    • /
    • pp.79-87
    • /
    • 1997
  • Untill now, the most well-known cofiguration for waveguide grating router(WGR) is composed of radiative star couplers and arrayed waveguide grating(AWG), which usually suffer form the rdiation loss of around 3dB or more. Therefore, te improved design of WGRs is needed to reduce the loss. In ths paper, we propose a novel WGR composed of multimode interference couplers which have good unifiormity, fabrication tolerance, and very low excess loss, and suggest the efficient algorithm to find the proper path length differences of AWG for given channel spacing and channel assignment to each output prot. The simulated spectral responses of the proposed WGR using the finite difference beam propagation method (BPM) show that the excess loss is less than 0.3dB and the crosstalk less than -25dB in case of 4x4 WGR, and the excess loss less than 0.4dB and the crosstalk less than -25dB in case of 8x8 WGR for all the channel wavelengths.

  • PDF

An Adaptive Rate Allocation to Source-Channel Coding for Internet Video

  • Kwon, Jae-Cheol;Kim, Jae-Kyoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1915-1919
    • /
    • 2003
  • A practical method of adaptive rate allocation to source and channel codings for an independent loss channel is proposed for Internet video. It is based on the observations that the values of residual loss probabilities at the optimal code rates for different packet loss probabilities are closely clustered to the average residual loss probability for a transmission frame size n in RS(n,k) code and for a total bit rate R. These observations aye then exploited to find the code rate for maximum PSNR. Simulation results demonstrate that the proposed method achieves a near-optimal bit-rate allocation in the joint source-channel coding of H.263 and RS(n,k) codings.

  • PDF

최적의 FEC 부호율 결정을 위한 정확한 채널손실 한계집합 추정기법 (An Accurate Estimation of Channel Loss Threshold Set for Optimal FEC Code Rate Decision)

  • 정태준;정요원;서광덕
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.268-271
    • /
    • 2014
  • 소스 부호 왜곡 모델 및 채널 유도 왜곡 모델 기반의 기존의 FEC 부호율 결정 기법들은 일반적으로 높은 계산 복잡도와 구현 비용을 요구하는 모델 파라메터 트레이닝 과정을 요구한다. 본 논문에서는 복잡한 모델링 과정을 피하기 위해서 최적의 FEC 부호율 결정을 위한 채널 손실 한계집합을 추정하기 위한 정확한 소스-채널 결합 왜곡 모델을 제안한다.

탄성채널을 이용한 석고보드 건식벽체의 저주파 대역 차음성능 개선 (Improvement of Sound Insulation at Low Frequencies Using Resilient Channel)

  • 김경호;전진용
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.94-99
    • /
    • 2017
  • Breaking the rigid connection between the two faces of the wall can significantly improve the sound transmission loss of the wall. This is usually achieved by resiliently mounting the gypsum board on one of the two faces of the wall using resilient channel. Resilient channel with less stiffness than that of air cavity could move the resonance frequency of the light-weight wall. So we can get higher sound transmission loss at low frequencies for light-weight wall using resilient channel. It's sound transmission loss is 17 dB higher than that of single stud wall, and 5 dB higher than that of double stud wall.