• Title/Summary/Keyword: Changjiang Outflow Water

Search Result 3, Processing Time 0.017 seconds

Radium Isotope Ratio as a Tracer for Estimating the Influence of Changjiang Outflow to the Northern Part of the East China Sea (라듐 동위원소 방사능비를 추적자로 사용한 동중국해 북부 해역에서 장강 유출수의 영향 추정)

  • Kim, Kee-Hyun;Kim, Seung-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.133-142
    • /
    • 2009
  • In order to understand the present environmental condition and future impingement of Changjiang(Yangtze River) outflow upon the adjacent seas after the scheduled completion of the Sanxia (Three Gorges) Dam in 2009, we tried to estimate the mixing ratios among surface waters of three end-members: Changjiang Water (CW), Kuroshio Water (KW), and East China Sea Water (ECSW) using $^{228}Ra/^{226}Ra$ activity ratio and salinity as tracers. Water samples were collected from 32 stations in November 2005 (R/V Tamgu 3), from 20 stations in July 2006 (R/V Ocean 2000) and from 17 stations in August 2006 (R/V Ieodo) in the northern part of the East China Sea. Radium isotopes in ~300 liters of surface seawater were extracted onboard by filtering through manganese impregnated acrylic fibers and following coprecipitation as $Ba(Ra)SO_4$. Activities of radium isotopes were determined by a high purity germanium detector. Results show that the fraction of CW was in the range of 1-23% in the study area, while KW was in the range of 0-30 % and ECSW 58-100 %. The eastward plume of Changjiang outflow, commonly observed in satellite images during summer and also displayed by the eastward-decreasing CW fraction in this study, could be attributed to Ekman transport caused by the SE monsoon prevailing in this region during summer. Results of this study showed that in the drought season, there was a little or no fraction of CW in the study area. Concentration of dissolved inorganic nitrogen (DIN) showed strong positive relationship with the fraction of CW, suggesting Changjiang as the major source of nitrogen. The mixing curve of DIN indicates the removal of nitrate by biological uptake during the mixing of CW with ambient seawater in the study area.

  • PDF

Water and Salt Budgets for the Yellow Sea

  • Lee, Jae-Hak;An, Byoung-Woong;Bang, Inkweon;Hong, Gi-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.125-133
    • /
    • 2002
  • Water and salt budgets in the Yellow Sea and Bohai are analyzed based on the historical data and CTD data collected recently using box models. The amounts of volume transport and of water exchange across the boundary between the Yellow and East China Seas are estimated to be 2,330-2,840 $\textrm{km}^3$/yr and 109-133 $\textrm{km}^3$/yr, respectively, from the one-layer box model. Corresponding water residence time is 5-6 years. In the Bohai, water residence time is twice as long as that in the Yellow Sea, suggesting that the Yellow Sea and Bohai cannot be considered as a single system in the view of water and salt budgets. The results indicate that water and salt budgets in the Yellow Sea depend almost only on the water exchange between the Yellow and East China Seas. The computation with the coupled two-layer model shows that water residence time is slightly decreased to 4-5 years for the Yellow Sea. In order to reduce uncertainties for the budgeting results the amount of the discharge from the Changjiang that enters into the Yellow Sea, the vertical advection and vertical mixing fluxes across the layer interface have to be quantified. The decreasing trend of the annual Yellow River outflow is likely to result that water residence time is much longer than the current state, especially for the Bohai. The completion of the Three Gorges dam on the Changjiang may be change the water and salt budgets in the Yellow Sea. It is expected that cutting back the discharge from the Changjiang by 10% through the dam would increase water residence time by about 10%.

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF