• Title/Summary/Keyword: Changjiang Diluted Water plume

Search Result 3, Processing Time 0.015 seconds

A Numerical Experiment on the Dispersion of the Changjiang River Plume

  • Bang, In-Kweon;Lie, Heung-Jae
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.185-199
    • /
    • 1999
  • With a realistic geography and topography the Princeton Ocean Model is used to study the effects of topography, wind and time-varying Chanajiang (Yangtze) River discharge on the dispersion of the Chanaiiang River plume in the Yellow and East China Seas. The topographic feature of deepening offshore suppresses the offshore expansion of the discharged low salinity water while spreading along the coast is not hindered. Also the spreading of the Chanajiang River plume is very sensitive to wind conditions and the southerly wind is most responsible for the eastward expansion toward the Cheju Island. It is also shown that the influence of the Chanajiang River Diluted Water on the hydrography and circulation of the Yellow Sea including the South Sea of Korea is substantial even in the absence of tide, wind and current.

  • PDF

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF