• Title/Summary/Keyword: Changes of Golf Club

Search Result 8, Processing Time 0.019 seconds

A study on the taping techniques of functional golf inner-wear for improving golf swing trajectory & shot distance (골프 스윙궤적 및 비거리 향상을 위한 기능성 골프 이너웨어의 테이핑 기법 연구)

  • Jungwoo Kim
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • The purpose of this study was to develop the Functional golf inner-wear by preventing the injuries and enhancing the performance of the Golf swing by checking the influence of the wearing of the functional golf inner-wear considering golf characteristics on the Swing trajectory and Shot distance. Functional inner-wear effective for golf swing was manufactured using the sports taping method. Changes in driver and iron swing before and after wearing the functional golf inner-wear manufactured in this way were measured using trackman equipment. Measurement variables were limited to Club Speed, Attack Angle, Club Path, Ball Speed, Smash Factor, and Priority. Before and after wearing functional golf inner-wear, there were statistically significant differences in driver club speed, iron club speed, driver etch angle, iron club pass, driver ball speed, driver smash factor, iron smash factor, driver carry, iron carry, and right shoulder joint proprioceptive sensory ability. As a result, functional golf inner-wear is effective for ball speed, impact, and carry by increasing club speed and efficient swing. Future research will focus on the development of functional golf that can improve the swing ability in a short game that plays an important role in the golf game through various sports taping grafting technique, textile, special material, film, Research on functional golf inner-wear.

An Analysis of the Quantitative Changes of Elements on Golf Courses - With Special Reference to the Membership Golf Courses in Capital Area, Korea - (한국 골프 코스 구성 요소의 정량적 변화 분석 - 수도권 회원제 골프장을 대상으로 -)

  • Rho, Joon-Taek;Cho, Se-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.112-126
    • /
    • 2012
  • The theme is to analyze the time-series changes of design elements on golf courses and golf country club and its factors influencing to the changes with regard to 81-membership country club located in the Capital Area of Seoul, created in the periods from 1964 until 2011. The research methods is to analyze the time-series changes of environmental factors influencing to the changes of the elements on the golf course by book review, and to compare and speculate the results of the analysis on the environmental factors with the time-series changes on the golf course elements of statistical analysis as like regression analysis. The research results were as follows. The first, the environmental factors influencing to the change of golf course elements were analyzed as the five elements of the golf-related policies and regulations, the economy, the numbers of golfers, PGA and KPGA golf tournaments, the golf instruments. The second, the type and scale of the location of the golf course were showing trends of transformation from flat ground to mountainous one and from small scale to large one. The third, it was analyzed that he golf course elements as like the sizes, length, numbers of golf course elements as like fairway, green, bunker, teeing ground and pond were influenced by the law and regulation, the increase of amateur golfers, the promotion of techniques of golfers, the increase of the chance of foreign course designer's involvement to domestic market through the opening of PGA and KPGA tournaments etc. The fourth, the promotion of golf instruments and the flying distance were the factors influencing to the numbers of bunker, the lengths of holes. The fifth, it was revealed that the trends of increase of sizes of ponds influenced by enacting environmenal friendly laws and regulations, considering of landscaping, reflecting of design trends followed by the opening of PGA tournaments. Finally, it was proposed that the further research would be introduced with regard to the qualitative analysis onto the changes and influential factors of golf course design.

Changes of Setup Variables by the Change of Golf Club Length (골프 클럽의 길이 변화에 따른 준비 자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.95-104
    • /
    • 2005
  • To know the proper setup posture for the various clubs, changes of setup variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed videocameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. The variables divided into three categories 1) position and width of anterior-posterior direction 2) position and width of lateral direction 3) angles and evaluated based on the theories of many good golf teachers. Major findings of this study were as follows. 1.The stance (distance between ankle joints) was increased as the length of the club increased but the increasing width was not large. It ranges from 5cm to 10cm and professional player showed small changes. 2. Forward lean angle of trunk was decreased (more erected) as the length of the club increased. It ranges from 30 degrees for iron7 to 25 degrees for driver. 3. Angle between horizontal and right shoulder were increased as the length of the club increased. It ranges from 10 degrees to 20 degrees and professional player showed small changes. 4. Anterior-posterior position of the shoulders were located in front of the foot for all clubs and the difference between the shoulder and knee position was decreased as the length of the club increased. 5. Anterior-posterior position of grip (hand) was located almost beneath the shoulders (2.5cm front) for iron7, but it increased to 10cm for the driver. This grip adjustment makes the height of the posture increased only 5cm from iron7 to driver. 6. Lateral position of grip located at 5cm left for the face of iron7, but it located at the right side (behind) for the face of driver. 7. Lateral position of the ball located at the 40%(15cm) of stance from left ankle for iron7 and located at the 10% (5cm) of stance for driver. 8. Head always located at the right side of the stance and the midpoint of the eyes located at the 37% of stance from the right ankle for all clubs. This means that the axis of swing always maintained consistently for all clubs. 9. Left foot opened to the target for all subject and clubs. The maximum open angle was 25 degrees. Overall result shows that the changes of the setup variables vary only small ranges from iron7 to driver. Paradoxically it could be concluded that the failure of swing result from the excessive changes of setup not from the incorrect changes. These findings will be useful for evaluating the setup motion of golf swing and helpful to most golfers.

Changes of Impact Variables by the Change of Golf Club Length (골프 클럽에 따른 타격자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.

Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing (클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.

A Kinematical Characteristic Analysis of a Iron fade-shot with a Golf Swills (아이언 페이드샷의 운동학적 특성 분석)

  • Lee, Kyung-Il;Oh, Jong-Sun;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.311-322
    • /
    • 2009
  • Using the 3-D analysis, this study winpared and analyzed the 'fade-shot swing' which is one of the golf technique. The subjects of this study were 3 male pro golfers they experimented with only a 7 iron. The purpose was to enhance their performance by producing the important kinematical parameters, finding out the features in them and providing the data to a coach and players. As a result, the position of the club head showed from the outside orbit to the inside orbit. When position of the center of mass moved backwards, the probability of the failure of the fade-shot increased. Cocking angle had an effect on easing the wrist for a smooth follow-through after the impact. It showed that the changes in the shoulder movement was made first and followed by the waist. The hip joint angular velocity achieved a smooth fade-shot motion due to the hitting delay also the velocity of the club-head was faster when uncocking was released at the time of impact.

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

Change of Impact by the Early Extension in during a Golf Driver Swing (골프 드라이버 스윙 시 Early Extension에 따른 임팩트 변화)

  • So, Jae-Moo;Kim, Yong-Seok;Kim, Jae-Jung;Yoo, Kwang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • The purpose of this study is to validate that change of impact by the Early Extension in during a golf driver swing. 13 golf players who were diagnosed with symptoms of Early Extension participated in a proactive corrective training programs that took place 3 times a week for a 4 month period. Data was collected by recording 5 pre and 5 post training driver swings and analyzing the data to calculate the change in velocity and its effect in the shot used the TRACK MAN. After the training, the changes of early extension were -0.21 cm in backswing section E2(take away), -0.64 cm in E3(halfway backswing), and -0.94 cm in E4(backswing top). The downswing section changes were -1.34 cm in event E5(halfway downswing), -1.74 cm in E6(impact). Impact force increased and thus club speed increased by 6.32 km/h, ball speed increased by 10.94 km/h, max height decreased by -6.22 m, carry increased by 10.85 m, carry side(left deviation) decreased by 4.84 m, flight time by increased by 0.4 sec, and total length increased by 17.96 m while landing angle decreased by -7.74 deg.