• Title/Summary/Keyword: Change of water depth

Search Result 567, Processing Time 0.024 seconds

A Study on the Planting and Cultivate of Hong Man-Seon(1643~1715)'s 'Salimkyungjae (山林經濟, The Economy of Forest)' (홍만선의 '산림경제(山林經濟)'에서 본 조경식물 재배(종수법(種樹法))와 가꾸기(양화법(養花法)))

  • Shin, Sang Sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.18-43
    • /
    • 2011
  • The results of study on planting and cultivate of Hong Man-Seon(1643~1715)'s 'Salimkyungjae(The Economy of Forest)' the first summative textbook of agricultural skill of South Korea, are as follows. First, 'Salimkyungjae' suggests that one can enrich oneself, eat fruits in fall, enjoy the shade of trees in summer, and enjoy flowers in spring if one plants tree with 10 year plan with knowledge of ecology. Second, the number of plants had increased continuously from the early Chosun Dynasty to the mid Chosun Dynasty. The 52 plants in the book are classified into 31 trees, 8 shrubs, 3 others, and 10 herbs, and 28 of them are fruit trees. Hence, we can see that the book is for the promotion of welfare. Third, planting(transplantation) is the best on January of the lunar calendar, and the second on February, and fertile soil should be added much. Trees must be planted as deep as once it was planted, and buttressed. It will sprout well if it is planted at the depth of one inch, and planting a cutting should be carried out at the early March with 5 inch and finger-thick branches. Grafting is the best when it begins to sprout. Fruit trees will bear many fruits if they are grafted at the direction of South, and fruits will be greater if the trees' branches are cutting off on January. Especially, January was selected for the best season of planting traditionally. Fourth, flower trees are planted or sowed with manure around January and February of the lunar calendar, and it is recommended to replant them into flowerpots with manure when having flower buds around March and April of the lunar calendar. It would bloom earlier when using water mixed with stable manure, and sulfur smoke can be used in order to change the flower color from red to white. Flowerpots would be placed at half shaded lot with being supported by bricks. Pomegranate, gardenia, camellia and four-season flower should be planted after flowers fallen. When flower trees are beside walls, they need to be rotated frequently since their branches all point toward house. Seeds need to be preserved in a sunny hut, where its entrance and ventilating openings would be at south because it is convenient to manage pots. Fifth, insects hidden at fruit trees would be destroyed by torch smoke when roosters cry on New year's day of the lunar calendar. Insects would be decoyed into straw hanged at dawn of Cheongmyeongday(淸明日). Insects on fruit trees would be controlled using sulfur powder to close up holes or sulfur smoke to fumigate. Particularly, it suggests that utilization of fertile soil would be the best solution for growing health plants and preventing pest.

Schematic Maps of Ocean Currents in the Yellow Sea and the East China Sea for Science Textbooks Based on Scientific Knowledge from Oceanic Measurements (관측 기반 과학적 지식에 근거한 과학교과서 황해 및 동중국해 해류모식도)

  • PARK, KYUNG-AE;PARK, JI-EUN;CHOI, BYOUNG-JU;LEE, SANG-HO;SHIN, HONG-RYEOL;LEE, SANG-RYONG;BYUN, DO-SEONG;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.151-171
    • /
    • 2017
  • Most of oceanic current maps in the secondary school science and earth science textbooks have been made on the base of extensive in-situ measurements conducted by Japanese oceanographers during 1930s. According to up-to-date scientific knowledge on the currents in the Yellow Sea and the East China Sea (YES), such maps have significant errors and are likely to cause misconceptions to students, thus new schematic map of ocean currents is needed. The currents in the YES change seasonally due to relatively shallow water depths, complex terrain, winds, and tides. These factors make it difficult to construct a unified ocean current map of the YES. Sixteen major items, such as the flow of the Kuroshio Current into the East China Sea and its northward path, the origin of the Tsushima Warm Current and its path into the Korea Strait, the path of Taiwan Warm Current, the Jeju Warm Current, the runoff pattern of the Yangtze River flow, the routes of the northward Yellow Sea Warm Current, the Chinese Coastal Current, and the West Korea Coastal Current off the west coast of the Korean Peninsula, were selected to produce the schematic current map. Review of previous scientific researches, in-depth discussions through academic conferences, expert discussions, and consultations for three years since 2014 enabled us to produce the final ocean current maps for the YES after many revisions. Considering the complexity of the ocean currents, we made seven ocean current maps: two representative current patterns in summer and winter, seasonal current maps for upper layer and lower layer in summer and winter, and one representative surface current map. It is expected that the representative maps of the YES, connected to the current maps of the East Sea and the Northwest Pacific Ocean, would be widely utilized for diverse purposes in the secondary-school textbooks as well as high-level educational purposes and even for scientific scholarly experts.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

The Study on Properties and Application of Enhanced Dynamic Wedge Factor (향상된 동적쐐기인자(Enhanced Dynamic Wedge Factor)의 특성 및 적용에 관한 고찰)

  • Kim, Dae-Sup;Ban, Tae-Joon;Yeom, Mi-Suk;Yoo, Soon-Mi;Lee, Woo-Seok;Back, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • Purpose: We try to calculate EDW-factor easily with the formula applies essential data of EDW-factor and evaluate the validity through a measurement. Materials and Methods: We used the given value of GSTT (Golden Segmented Treatment Table) for the calculation of the EDW-factor. As to the experimental device, 0.6 cc farmer-type ion-chamber, an electrometer and water- phantom were used. A measurement was made at the maximum dose depth of the photon beam energy 6 MV and 15 MV under the condition that SSD (Source to Surface Distance) was 100 cm. The angle of the EDW (Enhanced Dynamic Wedge) which we use in an experiment was 60 degree, 30 degree, 20 degree in the Y1-OUT direction. We used Eclipse planning system (Varian, USA) as RTP system and the EDW-factor was calculated about all fields and EDW direction. In order to show the EDW-factor feature, a measurement was made at the selected field that verify the influence of the dependability about X, Y jaw and off-axis field. Results: When we change the Y1 field, it influence on the EDW-Factor and measured value. But the error between measured values and calculated values was less than 1%. The experimental result indicated the tendency that the error of the result of calculation and measured value becomes smaller as the EDW angle become smaller whether the calculation point (measurement point) and iso-center are same or not. The influence of the field size and energy did not show up. We simulated with the same condition using the RTP system. And we found that it makes no difference between the MU which is calculated manually by applying the EDW-Factor obtained from the commercial program and the value which is calculated by using RTP system. Conclusion: We excluded fitting value from well-known EDW-Factor formula and calculated EDW-factor with the formula applies essential data of EDW-factor only. As a result, there are no significant difference between the measured value and calculated value and it showed errors less than 1%. Also, we implemented the commercial program to calculate EDW-Factor conveniently without measure a factor on each field.

  • PDF

Phenology and Population Dynamics of Scirpus fluviatilis (Torr.) A. Gray in the Littoral Zone of the Upo Wetland (우포늪 연안대에서 매자기의 화력학과 개체군 변화)

  • Seo, Hye-Ran;Park, Sang-Yong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Seasonal changes of the growth characteristics and biomass of Scirpus fluviatilis, a aquatic emergent vascular plant, were investigated to reveal the phenology and the population dynamics and to provide the fundamental resources for the restoration counterplan of the wetland vegetation in the littoral zone of the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from March 2006 to November 2006. Scirpus fluviatilis was distributed commonly in Upo, Mokpo, Sajipo, Jokjibyeol, and Topyeongcheon upstream and downstream of Upo wetland, and the density was highest in Mokpo. Distribution range for the water depth was 9~49cm, and the highest shoot density in 26~49cm, and the mean shoot density was $119/m^2$, and the mean shoot length was 122.3cm on May 28. The number of the tuber was $104.5/0.25m^2$, and the living tubers were 84.2%. The mean fresh biomass of the living tubers was 3.0g, and those of 1~4g was most as 57.9%. Germination rates of the living tubers was 43.8%, and the maximum rate was in 7~9g and more than 10g. In the pot cultivation, the shoot density of the germinated tubers and the dormant tubers were highest as 13.5 and 9.7, respectively in early August. In the field study, the shoot density had few change before typhoon damage, while the density increased abruptly in November after flooding accompanied with the typhoon 'Ewiniar'. The shoot length in the pot cultivation and in the field study were 100~116cm and 60~170cm, respectively in the growth-end. Biomass allocation rates into the stem, leaf, flower, and underground parts were 8.9%, 6.6%, 0%, and 84.5%, respectively in the pot cultivation of the germinated tubers, and those of the dormant tubers were 7.1%, 7.1%, 0%, and 85.8%, respectively. The tuber number increased to 1.4~4.1 times by the growth-end, so it is concluded that Scirpus fluviatilis is mostly propagated by the vegetative reproduction.

  • PDF

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (II) - Opening Efficiency of the Model Net according to Front Weight and Wing-end Weight - (무부자 쌍끌이 중층망 어구어법의 개발 (II) - 추와 날개끝 추의 무게에 따른 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.189-196
    • /
    • 2003
  • In this study, the vertical opening of the non-float midwater pair trawl net was maintained by controlling the length of upper warp. This was because the head rope was able to be kept linearly and the working depth was not nearly as changed with the variation of flow speed as former experiments in this series of studies have demonstrated. We confirmed that the opening efficiency of the non-float midwater pair trawl net was able to be developed according to the increase in front weight and wing-end weight. In this study, we described the opening efficiency of the non-float midwater pair trawl net according to the variation of front weight and wing-end weight obtained by model experiment in circulation water channel. We compared the opening efficiency of the proto type with that of the non-float type. The results obtained can be summarized as follows:1. The hydrodynamic resistance was almost increased linearly in proportion to the flow speed and was increased in accordance with the increase in front weight and wing-end weight. The increasing rate of hydrodynamic resistance was displayed as an increasing tendency in accordance with the increase in flow speed. 2. The net height of the non-float type was almost decreased linearly in accordance with the increase in flow speed. As the reduced rate of the net height of the non-float type was smaller than that of the net height of the proto type against increase of flow speed, the net height of the non-float type was bigger than that of the proto type over 4.0 knot. The net width of the non-float type was about 10 m bigger than that of the proto type and the change rate of net width varied by no more than 2 m according to the variation of the front weight and wing-end weight. 3. The mouth area of the non-float type was maximized at 1.75 ton of the front weight and 1.11 ton of the wing-end weight, and was smaller than that of the proto type at 2.0∼3.0 knot, but was bigger than that of the proto type at 4.0∼5.0 knot. 4. The filtering volume was maximized at 3.0 knot in the proto type and at 4.0 knot in the non-float type. The optimal front weight was 1.40 ton.