• 제목/요약/키워드: Chamferless assembly

검색결과 8건 처리시간 0.03초

학습적 방법에 의한 챔퍼없는 부품의 조립에 관한 연구 (Learning Assembly Strategies for Chamferless Parts)

  • 안두성;김성율;조형석
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.175-181
    • /
    • 1993
  • In this paper, a practical method to generate task strategies applicable to chamferless and high-precision assembly, is proposed. The difficulties in devising reliable assembly strategies result from various forms of uncertainty such as imperfect knowledge on the parts being assembled and functional limitations of the assembly devices. In approach to cope with these problems, the robot is provided with the capability of learning the corrective motion in response to the force signal trrough iterative task execution. The strategy is realized by adopting a learning algorithm and represented in a binary tree type database. To verify the effectiveness of the proposed algorithm, a series of simulations and experiments are carried out under assimilated real production environments. The results show that the sensory signal-to-robot action mapping can be acquired effectively and, consequently, the chamferless assembly can be performed successfully.

  • PDF

퍼지 및 신경회로망을 이용한 면취가 없는 부품의 자동결합작업에 관한 연구 (A Study on Mating Chamferless Parts by Integrating Fuzzy Set Tyeory and Neural Network)

  • 박용길;조형석
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-11
    • /
    • 1994
  • This paper presents an intelligent robotic control method for chamferless parts mating by integrating fuzzy control and neural network. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly method alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as not only the limitation of the devices performing the assembly but also imperfect knowledge of the parts being assembled. To cope with these problems, an intelligent robotic assembly method is proposed, which is composed of fuzzy controller and learning mechanism based upon neural net. In this method, fuzzy controller copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly scheme so as to learn fuzzy rules from experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly scheme is evaluted through a series of experiments using SCARA robot. The results show that the proposed control method can be effectively applied to chamferless precision parts mating.

자기학습 규칙베이스 조립알고리즘 (A self-learning rule-based assembly algorithm)

  • 박용길;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1072-1077
    • /
    • 1992
  • In ths paper a new active assembly algorithm for chamferless precision parts mating, is considered. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly mehtod alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as imperfect knowledge of the parts being assembled as well as the limitation of the devices performing the assebled as well as the limitation of the devices performing the assembly. To cope with these problems, a self-learning rule-based assembly algorithm is proposed by intergaring fuzzy set theory and neural network. In this algortihm, fuzzy set theory copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly schemen so as to learn fuzzy rules form experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly algorithm is evaluated through a series of experiments. The results show that the self-learning fuzzy assembly scheme can be effecitively applied to chamferless precision parts mating.

  • PDF

접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립 (Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System)

  • 강이석;김근묵;윤지섭;조형석
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2315-2327
    • /
    • 1992
  • 본 연구에서는 조립될 부품사이의 위치 오차를 극복하여, 로봇에 의한 정밀부 품의 자동조립을 가능하게 하는 조립알고리즘을 제시하였다. 제안된 조립알고리즘은 임의로 파지된 자세를 인식하여 조립될 축과 구멍의 중심선을 일치시키는 알고리즘과 복합위치 및 힘제어(hybrid position/force control)를 적용하여 위치오차를 극복하여 주는 구멍검색 알고리즘으로 구성하였으며, 로봇을 이용한 자동조립에 제안된 알고리 즘을 적용한 실험 결과를 보였다.

면취없는 부품의 조립을 위한 로보트 손목기구의 개발 (Development of a robot wrist for the assembly of chamferless parts)

  • 권대갑;정충민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.139-145
    • /
    • 1991
  • 본 논문에서는 chamfer가 없는 경우에도 조립이 가능한 로봇 조립용 손목기구를 개발하였다. 손목기구에서는 chamfer있는 경우에 우수란 적응능력을 가지는 RCC(Remote Center Compliance) 구조가 이용되었으며 위치측정용 sensor와 공압 actuator를 이용하여 조립시 생기는 RCC 구조의 변형을 측정하여 이로부터 능동적으로 오차를 교정하도록 하였다. sensor signal로부터 적절한 오차교정방향을 찾아내는 algorithm 으로는 신경회로망을 이용하였으며 이 결과 손목기구의 비선형성에도 잘 적응함을 볼 수 있었다. 제작된 로봇 조립용 손목을 이용하여 chamferless part의 조립을 실험한 결과 clearance ratio가 0.02인 경우 eccentricity가 2mm 까지 오차교정이 가능함을 볼 수 있었다.

  • PDF

면취없는 부품의 조립을 위한 로보트 손목기구의 개발 (Development of a Robot Wrist for the Assembly of Chamferless Parts)

  • 권대갑;정충민
    • 한국정밀공학회지
    • /
    • 제9권2호
    • /
    • pp.36-43
    • /
    • 1992
  • In this paper, a robot assembly wrist, which is able to assemble chamferless parts, has been developed. The RCC (Remote Center Compliance) structure is used as a basic structure. 5 position sensors and 4 pneumatic actuators are installed additionally to measure the deformation of RCC structure and correct the errors actively. Due to the restricted direction of actuation, a decision rule which selects the suitable actuator according to the position sensor signals is needed. For this purpose, a neural network is used and it is experimentally shown that the nerual network overcomes system's nonlinearity. This paper presents fundamental experiment results for the insertion of parts with several clearance.

  • PDF

퍼지규칙을 이용한 정밀부품 결합을 위한 조립알고리즘 (Fuzzy rule-based assembly algorithm for precision parts mating)

  • 박용길;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.693-698
    • /
    • 1991
  • This paper describes a fuzzy rule-based assembly algorithm for precision parts mating, The difficulties in devising reliable assembly strategies result from the complexity of the assembly process and the uncertainty such as imperfect knowledge of the parts being assembled as well as the limitations of the devices performing the assembly. To cope with above problems, we propose an assembly algorithm utilizing fuzzy set theory. The presented method allows us to represent the uncertainty by using fuzzy membership function and treat nonlinear sapping from measured force/torque to corrective motions using rules. Finally, the performance of this method is evaluated through a series of experiments. Experimental results show that the proposed method can be effectively used for chamferless and precision parts mating.

  • PDF

6축 힘 감지기를 사용한 챔퍼(chamfer)가 없는 부품의 조립 작업 (Chamferless part-mating using 6-axis force sensor)

  • 성영휘;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1155-1160
    • /
    • 1991
  • Active part mating algorithm using 6-axis force sensor data for the assembly automation and/or teletobotics is presented and experimented. Parts to be mated are cylindrical and have no chamfers. There are basically two modes. One is the normal mode with only a positional error, the other is the tilted mode with an orientational error in addition to a positional error. The used algorithm distinguishes a contact external to the hole from that of internal to the hole in order to perform part-mating in spite of the relative tilt between the hole and the peg.

  • PDF