• Title/Summary/Keyword: Chamfering Ratio

Search Result 4, Processing Time 0.019 seconds

A numerical simulation on the effect of hole geometry for film cooling flow (홀 형상이 막 냉각 유동에 미치는 효과에 대한 수치 해석적 연구)

  • Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.849-861
    • /
    • 1997
  • In this study, the effect of hole geometry of the cooling system on the flow and temperature field was numerically calculated. The finite volume method was employed to discretize the governing equation based on the non-orthogonal coordinate with non-staggered variable arrangement. The standard k-.epsilon. turbulence model was used and also the predicted results were compared with the experimental data to validate numerical modeling. The predicted results showed good agreement in all cases. To analyze the effect of the discharge coefficient for slots of different length to width, the inlet chamfering and radiusing holes were considered. The discharge coefficient was increased with increment of the chamfering ratio, radiusing ratio and slot length to width and also the effect of radiusing showed better result than chamfering in all cases. In order to analyze the difference between the predicted results with plenum region and without plenum region, the velocity profiles of jet exit region for a various flow conditions were calculated. The normal velocity components of jet exit showed big difference for the low slot length to width and high blowing rate cases. To analyze the flow phenomena injected from a row of inclined holes in a real turbine blade, three dimensional flow and temperature distribution of the region including plenum, hole and cross stream with flow conditions were numerically calculated. The results have shown three-dimensional flow characteristics, such as the development of counter rotating vortices, jetting effect and low momentum region within the hole in addition to counter rotating vortex structure in the cross stream.

A Development of High-Precision Chamfering Tool Set (고정도 챔퍼링 공구 셋트의 개발)

  • Kim, Chul;Choi, Yong-Hoon;Sho, Byung-Hwan;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.117-122
    • /
    • 2015
  • There has been a string of negligent accidents at the seaside, and there is presently a shortage of professional equipment to deal with such accidents. The purpose of this paper is to assess the development of a rescue lift. The critical load of a support pipe, and the stability of the rescue lift, were investigated using structural analysis. Critical-load analysis was used to study the effects of variations in the pipe length and the ratio of the moment of inertia. The total weight of the developed rescue lift is approximately 20.7 kg, and the lift passed the load tests.

An Experimental Study on Overlap Control at Plate Rolling (후판압연에서의 오버랩 제어에 대한 실험적 연구)

  • 천명식;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.376-385
    • /
    • 1991
  • For manufacturing trimming-free plates which have rectangular shaped edges and straight edges in as-rolled state, it is necessary to investigate rolling characteristics of overlap, bulge and width deviation etc. in a standardized plate rolling process. The present wok is for preventing edge overlap as the first approach to develop trimming-free plate rolling technique. An experimental study on overlap control was done with plasticine material in order to examine influence factors and find a control method by use of a laboratory mill scaled down to one tenth of actual production mill. It was found that edge overlapping was increased with the increase of slab thickness and of broadside rolling ratio, but decreased with the increase of chamfered amount on slab edges. In the simulated rolling experiment with edge chamfered slabs of various chamfered angles, the chamfered angle of 60.deg. was the most effective one for reducing overlapping irrespective of slab thickness and of broadside rolling ratio.

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF