• Title/Summary/Keyword: Chamber wall condition

Search Result 69, Processing Time 0.026 seconds

Conceptual Design of Coolant Channel for Sub-scale Combustion Chamber (소형 연소기 냉각 유로 개념 설계)

  • 정용현;조원국;한상엽;류철성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • A numerical heat transfer analysis and the structural analysis were performed for the design of sub-scale combustion chamber's coolant passage. The heat flux through the combustion chamber wall was estimated by 2-D heat transfer analysis of compressible hot gas and the result was applied as a thermal boundary condition of 3-D analysis. The heat flux estimated by the present method agreed well with the experimental correlation and proved to be insensitive to cooling condition. So the same thermal boundary condition was applied for various operating conditions. The maximum temperature of combustion chamber wall was predicted by 3-D analysis for single coolant passage and the result will be used for the development of a regeneratively cooled combustion chamber. Also estimated were the stress distribution and structural safety of coolant passage through the static structural analysis.

Plasma Etcher Chamber Wall Condition Analysis Using Actinometry

  • Eom, Jeong-Hwan;Gang, Tae-Gyun;Choe, Chang-Won;Yun, Tae-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.146.1-146.1
    • /
    • 2013
  • 반도체 디바이스의 집적화로 인하여 약간의 상태변화에 의하여 Chip의 불량이 발생하고 있다. 이로 인하여 일정한 플라즈마 상태를 유지 하는 것이 중요 한데 일정한 플라즈마 상태를 유지하기 위한 조건 중에 중요한 것이 채임버 Wall의 상태에 따른 변화 이다. 반도체 양산 장비에서 채임버 wall 상태를 직접 관찰하기는 어렵기 때문에 OES를 통한 많은 간접 분석방법의 개발이 이루어지고 있다. 본 연구에서는 간접 분석 방법 중 Actinometry 기법을 통하여 wall 상태를 분석하는 내용을 소개 하고 있으며 Argon gas를 통하여 전자온도, EEDF를 그려줄 수 있다는 내용을 담고 있다.

  • PDF

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.

Estimation of Optimal Slit Length of Perforated Wall below Still Water Level: Single Chamber Condition (정수면 아래 최적 유공부 길이 산정 : 유공 1실 조건)

  • Kim, Young Taek;Lee, Jong In
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • In this study, the optimal slit length of perforated wall with single chamber below the still water level (SWL) is studied through the two dimensional test. The relationship between the reflection coefficient and the shape of structures such as chamber width(B) and slit length(S) are investigated by applying the various wave conditions. The random waves were used for the test by using Bretschneider-Mitsuyasu frequency spectrum. Minimum reflection coefficient is obtained at $B/L_s{\approx}0.15$ condition, this result is different from the regular wave condition. Also the minimum reflection coefficients are measured at $S/H_s{\approx}2.5$. This means that the optimal slit length below the still water level is 2.5 times of the incident wave height.

Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber (막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구)

  • Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2006
  • The effects of the changes of a film cooling mass flow rate and operating conditions on wall heat flux characteristics of a subscale calorimetric combustion chamber were investigated by experiment and numerical analysis. At the nominal operating condition, with the film cooling mass flow rate being 10.5 percent of a main fuel mass flow rate, maximum heat flux at the nozzle throat was measured to be 30 percent lower than that without the film cooling. For the relatively higher mixture ratio and chamber pressure condition, maximum heat flux at the nozzle throat was increased by 31 percent compared to that of the nominal condition test without film cooling.

Experimental Study for Wave Reflection of Partially Perforated Caisson by Slit Shape of Front Wall (부분 유공케이슨의 Slit 형상에 따른 반사특성 실험)

  • Lee, Jong-In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1455-1462
    • /
    • 2013
  • This study examines the reflection of a partially perforated wall with single chamber by 2D and 3D hydraulic experiments. The effects of slit shape on the front wall, relative chamber width and wave steepness were discussed. For the normal incident wave condition, the reflections of horizontal slit case were lower than that of the vertical slit with the similar porosity, but the differences are not significant. When the wave steepness is relatively small, the reflection coefficients are large. In the oblique incidence, the normalized wave heights along a perforated wall with similar porosity are almost same for the vertical and horizontal slit walls and therefore the difference by slit shape can be ignored.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

On the flame propagation in a spark-ignited gasoline engine (전기점화식 내연기관에 있어서 화염전파에 관한 연구)

  • 이종원;이형인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 1982
  • The purpose of this study is to investigate the flame propagation phenomenon in the combustion chamber of spark-ignition gasoline engine for the idling condition. by means of four ion probes located through the cylinder head, the time intervals for the flame to arrive at the respective probes are read on th visicorder char. As results, the flame is considered to initiate after some ignition delay and to propagate through the central space of combustion chamber with rather constant speed on the order of 25m/sec, and thereafter to be slowed down approaching the wall. Additionally, the retardation of flame in the wall boundary layer could be inferred. The maximum pressure is developed when the flame nearly touches the wall diagonal to the spark plug. And some features of flame propagation are elucidate.

  • PDF

Development of Ecological Sound Proof Wall by the germination of plant species at different Environmental Condition (생태방음벽에 개발에 사용되는 식물종의 성장에 관한 연구)

  • Bashyal, Sarita;Cho, Hae-Yong;Han, Say-Gwon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.100-102
    • /
    • 2009
  • Effect of temperature, pH and soil depth on germination of Dianthus chinensis, Dianthus barbatus, and Perennial pennant were investigated in growth chamber and soil condition at the ratio of 7:3 (natural soil and organic soil) in laboratory condition. the optimum temperature for seed germination was recorded for $20^{\circ}C-\;25^{\circ}C$. Maximum germination was observed for Dianthus barbatus (76%) where as in soil condition Perennial pennant (51%) showed maximum germination at 1 cm soil depth. Similarly, optimum pH for seed germination was at pH 6 in all the species. So in lower pH (at pH4) seed germination was inhibited. Germination of these selected species at different environmental condition help to construct the ecological sound proof wall to mitigate the noise especially in urban areas.

  • PDF

Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler (콤팩트 온수 보일러 연소실의 열전달 특성)

  • Cho, Jung-Hwan;Seo, Tae-Beom;Kim, Wook-Jung;Kim, Chang-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF