• Title/Summary/Keyword: Chain Scission

Search Result 59, Processing Time 0.035 seconds

Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol (TiO2 sol-gel 합성에 의한 파라 아라미드 섬유의 내광성 증진 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Sim, Ji-Hyun;Lee, Jae-Ho;Kim, Sam-Soo;Lee, Mun-Cheul;Choi, Jong-Seok
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • Although para-aramid fibers poss higher mechanical properties, they show very low resistance to sunlight exposure. This paper studied on the effect of nano-sol coated $TiO_2$ to improve the photo-stability of p-aramid fibers. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio ($H_2O$/titanium iso-propoxide). All samples were characterized by XRD, TEM and UV-vis spectrometer. The mechanical properties of p-aramid fabrics by $TiO_2$ nano-sol coating before and after sunlight irradiation were measured with tensile tester. XRD pattern of titanium dioxide particles was observed by mixing phase together with rutile and anatase type. The results showed, after sunlight irradiation, the decreased mechanical properties of the fiber. Furthermore, the sunlight irradiation obviously deteriorated the surface and defected areas of the fiber severely by photo-induced chain scission and end group oxidation in air.

Production properties of pyrolytic matter of PP and PS plastics in n low temperature pyrolysis condition (저온 열분해조건에서 PP 및 PS계 플라스틱의 열분해물 생성특성 연구)

  • Kim, Sang-Hoon;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.867-873
    • /
    • 2007
  • Thermal degradation characteristics of polypropylene and polystyrene have been studied in the thermogravimetric(TG) reactor and batch-type microreactor. The dynamic thermogravimetric curve of TG provided a valuable information about pyrolysis temperature. It was found that PS was thermally degraded at lower temperature of $30{\sim}50^{\circ}C$ than PP. It was found that the yield and molecular weight of liquid product in the microreactor were decreased with the increase of reaction temperature and time in the case of PP. The production of styrene monomer was significantly increased by the promotion of depolymerization with the increase of temperature and time. The chain-end scission rate parameters were determined to be 50.0 kcal/mole of PP, 45.2 kcal/mole of PS by the Arrhenius plot.

  • PDF

Hydrophilic property by contact angle change of ion implanted polycarbonate (이온주입 Polycarbonate의 접촉각 변화에 의한 친수특성)

  • Lee, Chan-Young;Lee, Jae-Hyung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.533-538
    • /
    • 2003
  • It has been shown that ion implantation produces remarkable improvements in surface-sensitive physical and chemical properties as well as other mechanical properties, in polymers. In this study, ion implantation was performed onto polymer, PC(polycarbonate), in order to investigate surface hydrophilic property through contact angle measurement using distilled water. PC was irradiated with N, Ar, Xe ions at the irradiation energy of $20\;{\sim}\;50keV$ and the dose range of $5{\times}10^{15},\;1{\times}10^{16},\;7{\times}10^{16}\;ions/cm^2$. The contact angle of water has been reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural property are discussed in view of infrared spectroscopy and FT-IR, XPS, which shows increasing C-O bonding and C-C bonding. The root mean square of surface roughness examined by means of AFM changed smoothly from 0.387nm to 0.207nm and the change of wettability was discussed with respect to elastic and inelastic collisions obtained as results of TRIM simulation. It was found that wettability of the modified PC surface was affected on change of functional group and nuclear stopping or linear energy transfer(LET, energy deposited per unit track length per ion) that causes chain scission by displacing atom from polymer chains, but was not greatly dependant on surface morphology.

  • PDF

Hydrolysis Stability of Sulfonated Phthalic and Naphthalenic Polyimide with Ester Bond (에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구)

  • 이영무;이창현;손준용;박호범
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Sulfonated polyimides had been utilized and studied widely as available materials in chloro-alkali electrolysis, cationic exchange resins, and so on. However, a slow decrease in performance during experiments had been reported, which could be attributed to a loss of ionic conductivity related to either a continuous dehydration or polymer degradation. One of main reasons to account for the degradation of sulfonated polymers is the hydrolysis leading to polymer chain scission and decrement of molecular weight. Therefore, the objective of our study was to investigate possible imide cycle and additional ester bond cleavage connected with $SO_3$H presence under hydrated condition. In order to confirm and obtain as clear information as possible about breakages of bonds via $^1H\; and \;^{13}C$ NMR and IR spectroscopic analyses, our study was performed by model compound. Consequently, model compounds with both phthalic and naphthalenic imide ring and ester bonds were synthesized to evaluate the hydrolysis stability of sulfonated polyimide. The experiments were performed for prepared model compounds before and after aging in deionized water at $80^{\circ}C$ and were terminated by lyophilization technique. The aging products were finally analyzed by NMR and IR spectroscopy.

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy (폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.712-720
    • /
    • 2012
  • Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

Cure and Mechanical Behaviors of Cycloaliphatic/DGEBA Epoxy Blend System using Electron-Beam Technique (전자선 조사에 의한 고리지방족/DGEBA 에폭시 블렌드 시스템의 경화 및 기계적 특성)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • 4-Vinyl-1-cyclohexene diepoxide (VCE)/diglycidyl ether of bisphenol-A (DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. The effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system vaned within 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor ($_{4}$) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chain structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T$\_$max/), and decomposition activation energy (E$\_$d/) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum $_{4}$ value showed at mixing ratio of 40:60 wt% in this blend system. in this blend system.

Mechanical Property Behaviors of Polyethylene Pipe due to Thermal-Degradation (열화시간에 따른 폴리에틸렌 파이프의 기계적 물성 거동)

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.446-451
    • /
    • 2009
  • Reliability evaluations of linear low density polyethylene (LLDPE) pipe with respect of thermal exposure time have been investigated in accordance with RS M 0042, which is a reliability standard for polymer pipe. As the thermal exposure time is prolonged, a progressive increase, until 250 days, in tensile strength and a slight increase in hardness are observed, while a proportional decrease in elongation at break is showed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation as the exposure time increases. Long term hydrostatic pressure test result implies the existence of transition point from ductile to brittle fracture. Oxidation induction time (OIT) test is employed to monitor the thermo-oxidative degradation of LLDPE pipe. This result shows that after the exposure time is 250 days, the depletion of antioxidants added in LLDPE pipe occurs. An empirical equation as function of exposure time, under $100^{\circ}C$ thermal-degradation condition, is proposed to assess the remaining amount of antioxidants owing to thermo-oxidative degradation. Fourier transform infrared spectroscopy results show the increase of carbonyl (-C=O) and hydroxyl (O-H) function groups on the surface of thermally exposed LLDPE pipe. This result suggests that the hydrocarbon groups locally undergo the oxidation on the LLDPE surface due to thermal-degradation.

Mechanical Degradation of Polystyrene by Mastication (II). Basic Studies on Recovery of Waste Polystyrene (Mastication에 依한 Polystyrene의 機械的 分裂 (第2報). 廢 Polystyrene 樹脂의 再生利用에 關한 基礎的 硏究)

  • Ki-Hyun Chung;Kook Joong Kim;Sang Dae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.386-393
    • /
    • 1975
  • Polystyrene and polystyrene blended with SBR were subjected to the mechanical degradation by roll mastication. The results obtained are as follows. 1. For the polystyrene which is blended with SBR, the overall shape of the molecular weight distribution curve moves from the higher molecular weight portion to the lower molecular weight portion, becomes narrower in breadth, and its peak becomes higher as the degradation proceeds. The final molecular weight distribution exhibits a relative uniformity. This is due to the fact that only the polymer molecules with the high molecular weight consisted in original polystyrene are degraded mechanically and produced the polymer molecules with the low molecular weight. 2. The scission number of polystyrene chains increases with mastication time, and the number of degraded polymer chains produced when the polymer is masticated for 100 minutes at 140, 150 and $160^{\circ}C$ are $2.36{\times}10^{20},\;1.76{\times}10^{20}\;and\;1.52{\times}10^{20}$, respectively. 3. The rate of the degradation of polystyrene decreases with the mastication temperature. The activation energy is found to have the negative value, -8.7 kcal/mole. Therefore it is indicated that the mechanical degradation is a chemical process of which the activation energy is supplied mechanically.

  • PDF

The Influence of E-beam Irradiation on POLY(ETHER-BLOCK-AMIDE) (PEBA, Pebax) (전자 빔 조사후 PEBA (Poly Ether Block Amide)의 구조 및 기계적 특성 변화)

  • Shin, Sukyoung;Cho, SangGyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.205-209
    • /
    • 2014
  • Medical polymers require sterilization and must be able to maintain material properties for a specified shelf life. Sterilization can be achieved by using gamma or e-beam exposure. In this study, accelerated aging tests of poly(ether-block-amide) (PEBA) copolymer samples is presented. PEBA copolymer samples with different polyether content that result in Shore hardness of 35D to 72D, were sterilized using e-beam radiation followed by accelerated aging at $55^{\circ}C$. E-beam sterilization effect on molecular weight and mechanical property has performed and analyzed. The average molecular weight significantly reduced as a result of ageing. The enlarged proportion of low molecular weight chains in the aged samples is consistent with the generation of degradation products produced by oxidative chain scission. Also E-beam materials have shown decreased tensile strength and elongation. Overall, this study demonstrated that the medical grade PEBA was significantly affected by radiation exposure over aging time, particularly at high irradiation doses. For medical use in case of radiation sterilization required, it is recommended to avoid Pebax material. If Pebax material must be in use for medical device, recommend to use alternate sterilization method such as Ethylene Oxide sterilization.