• Title/Summary/Keyword: Chage Detection

Search Result 3, Processing Time 0.015 seconds

An empirical evidence of inconsistency of the ℓ1 trend filtering in change point detection (1 추세필터의 변화점 식별에 있어서의 비일치성)

  • Yu, Donghyeon;Lim, Johan;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.371-384
    • /
    • 2022
  • The fused LASSO signal approximator (FLSA) can be applied to find change points from the data having piecewise constant mean structure. It is well-known that the FLSA is inconsistent in change points detection. This inconsistency is due to a total-variation denoising penalty of the FLSA. ℓ1 trend filter, one of the popular tools for finding an underlying trend from data, can be used to identify change points of piecewise linear trends. Since the ℓ1 trend filter applies the sum of absolute values of slope differences, it can be inconsistent for change points recovery as the FLSA. However, there are few studies on the inconsistency of the ℓ1 trend filtering. In this paper, we demonstrate the inconsistency of the ℓ1 trend filtering with a numerical study.

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

Detection of the Change in Blogger Sentiment using Multivariate Control Charts (다변량 관리도를 활용한 블로거 정서 변화 탐지)

  • Moon, Jeounghoon;Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.903-913
    • /
    • 2013
  • Social network services generate a considerable amount of social data every day on personal feelings or thoughts. This social data provides changing patterns of information production and consumption but are also a tool that reflects social phenomenon. We analyze negative emotional words from daily blogs to detect the change in blooger sentiment using multivariate control charts. We used the all the blogs produced between 1 January 2008 and 31 December 2009. Hotelling's T-square control chart control chart is commonly used to monitor multivariate quality characteristics; however, it assumes that quality characteristics follow multivariate normal distribution. The performance of a multivariate control chart is affected by this assumption; consequently, we introduce the support vector data description and its extension (K-control chart) suggested by Sun and Tsung (2003) and they are applied to detect the chage in blogger sentiment.