• Title/Summary/Keyword: Cetacean sound

Search Result 4, Processing Time 0.016 seconds

Trial manufacture of the underwater sound transmission system to measure the appearance frequency of cetacean at the fixed point (고정점에서 고래류의 출현빈도 측정을 위한 수중 음향 전송시스템의 시험 제작)

  • Shin, Hyeong-Il;Seo, Du-Ok;Kim, Seong-Ho;Kim, Byung-Yob;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The underwater sound transmission system(USTS) was experimentally made to monitor the cetacean's appearance by telemetry, and then its system was tested to evaluate its performance from July to October, 2007 at the Kimnyeong berth and the dolphin's breeding ground of Pacific Land in Jeju island, respectively. The results showed that the sweep sound in the trial experiment and the whistle sound of bottlenose dolphin(Tursiops truncatus) were favorably received by telemetry. Therefore, we could confirm the USTS is able to monitor the cetacean's appearance in real time without direct observation at sea within effective range of code division multiple access(CDMA) communication method.

Emergence Characteristics of Narrow-ridged Finless Porpoise Neophocaena asiaeorientalis Using Passive Acoustic Survey in the South Sea of South Korea (음향을 이용한 남해 연안에 서식하는 상괭이(Neophocaena asiaeorientalis)의 출현 특성 연구)

  • Choi, Seulgi;Kim, Eunho;Sohn, Hawsun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.989-999
    • /
    • 2021
  • The sound of finless porpoises Neophocaena asiaeorientalis was recorded with an acoustic recorder to confirm their emergence in the South Sea of South Korea in February, June, and November 2020. Sea water temperature and salinity were also measured. In addition, a sighting survey was conducted to observe the behavior of the finless porpoises and the marine environment, and the clicks of the finless porpoises were recorded every day. The results showed that they always emerged in the survey area. The finless porpoises mainly foraged, whereas some played or rested. The water temperature range of areas where the finless porpoises emerged was 7.5-23.5℃. Assuming that the number of clicks corresponds to the number of finless porpoises, the finless porpoises emerged the most during spring. The emergence decreased during winter and was the lowest during autumn. The finless porpoises emerged more during the daytime than during the nighttime in all seasons, indicating a temporal difference in the usage of the survey area. This might be due to the movement of prey organisms according to regional characteristics. A long-term survey and research on habitat use and environment is needed to manage and conserve the finless porpoises.

Relationship between roar sound characteristics and body size of Steller sea lion

  • Park, Tae-Geon;Iida, Kohji;Mukai, Tohru
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. A total of 300 roars of wild sea lions and 870 roars of captive sea lions were sampled. The fundamental frequency ($F_0$), formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female, and juvenile. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. Moreover, the $F_0$ and $F_1$ frequencies for captive sea lions were higher than those of wild sea lions, while PRR in captive sea lions was lower than in wild sea lions. Since there was a linear relationship between body length and the $F_0$ and $F_1$ frequencies in captive sea lions, the body length distribution of wild sea lions could be estimated from the $F_0$ and $F_1$ frequency distribution using a regression equation. These results roughly agree with the body length distribution derived from photographic geometry. As the volume of the oral cavity and the length of the vocal cords are generally proportional to body length, sampled roars can provide useful information about a population, such as the body length distribution and sex ratio.

Research trends of biomimetic covert underwater acoustic communication (생체모방 은밀 수중 음향 통신 연구 동향)

  • Seol, Seunghwan;Lee, Hojun;Kim, Yongcheol;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Covert Underwater Communication (CUC) signals should not be detected by other unintended users. Similar to the method used in Radio Frequency (RF), covert communication technique sending information underwater is designed in consideration of the characteristics of Low Probability of Detection (LPD) and Low Probability of Intercept (LPI). These conventional methods, however, are difficult to be used in the underwater communications because of the narrow frequency bandwidth. Unlike the conventional methods of reducing transmission power or increasing the modulation bandwidth, a method of mimicking the acoustic signal of an underwater mammal is being studied. The biomimetic underwater acoustic communication mainly mimics the click or whistle sound produced by dolphin or whale. This paper investigates biomimetic communication method and introduces research trends to understand the potential for the development of such biomimetic covert underwater acoustic communication and future research areas.