• 제목/요약/키워드: Cervus nippon hortulorum

검색결과 3건 처리시간 0.012초

Effects of feeding level on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Choi, Yongjun;Kim, Kyoung Hoon;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1238-1243
    • /
    • 2018
  • Objective: Two experiments were conducted to determine the effects of feeding level on nutrient digestibility and enteric methane ($CH_4$) emissions in growing goats and Sika deer. Methods: Three growing male goats (initial body weight [BW] of $22.4{\pm}0.9kg$) and three growing male deer (initial BW of $20.2{\pm}4.8kg$) were each allotted to a respiration-metabolism chamber for an adaptation period of 7 d and a data collection period of 3 d. An experimental diet was offered to each animal at one of three feeding levels (1.5%, 2.0%, and 2.5% of BW) in a $3{\times}3$ Latin square design. The chambers were used for measuring enteric $CH_4$ emission. Results: Nutrient digestibility decreased linearly in goats as feeding level increased, whereas Sika deer digestibility was not affected by feeding level. The enteric production of $CH_4$ expressed as g/kg dry matter intake (DMI), g/kg organic matter intake, and % of gross energy intake decreased linearly with increased feeding level in goats; however, that of Sika deer was not affected by feeding level. Six equations were estimated for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=6.2({\pm}14.1)+10.2({\pm}7.01){\times}DMI(kg/d)+0.0048({\pm}0.0275){\times}dry$ matter digestibility (DMD, g/kg)-0.0070 (${\pm}0.0187$)${\times}$neutral detergent fiber digestibility (NDFD; g/kg). For Sika deer, equation 4 was found to be of the highest accuracy: $CH_4(g/d)=-13.0({\pm}30.8)+29.4({\pm}3.93){\times}DMI(kg/d)+0.046(0.094){\times}DMD(g/kg)-0.0363({\pm}0.0636){\times}NDFD(g/kg)$. Conclusion: Increasing the feeding level increased $CH_4$ production in both goats and Sika deer, and predictive models of enteric $CH_4$ production by goats and Sika deer were estimated.

Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.967-972
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of forage-to-concentrate (F:C) ratio on the nutrient digestibility and enteric methane ($CH_4$) emission in growing goats and Sika deer. Methods: Three male growing goats (body weight $[BW]=19.0{\pm}0.7kg$) and three male growing deer ($BW=19.3{\pm}1.2kg$) were respectively allotted to a $3{\times}3$ Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric $CH_4$ emission. Treatments of low (25:75), moderate (50:50), and high (73:27) F:C ratios were given to both goats and Sika deer. Results: Dry matter (DM) and organic matter (OM) digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the $CH_4$ emissions expressed as g/d, g/kg $BW^{0.75}$, % of gross energy intake, g/kg DM intake (DMI), and g/kg OM intake (OMI) decreased linearly as the F:C ratio increased, however, the $CH_4$ emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=3.36+4.71{\times}DMI(kg/d)-0.0036{\times}neutral$ detergent fiber concentrate (NDFC,g/kg)+$0.01563{\times}dry$ matter digestibility (DMD,g/kg)-$0.0108{\times}neutral$ detergent fiber digestibility (NDFD, g/kg). For Sika deer, equation 5 was found to be of the highest accuracy: $CH_4(g/d)=66.3+27.7{\times}DMI(kg/d)-5.91{\times}NDFC(g/kg)-7.11{\times}DMD(g/kg)+0.0809{\times}NDFD(g/kg)$. Conclusion: Digested nutrient intake could be considered when determining the $CH_4$ generation factor in goats and Sika deer. Finally, the enteric $CH_4$ prediction model for goats and Sika deer were estimated.

Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

  • Xia, Yanling;Qu, Haomiao;Lu, Binshan;Zhang, Qiang;Li, Heping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.467-472
    • /
    • 2018
  • Objective: Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). Results: The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). Conclusion: ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.