• Title/Summary/Keyword: Cermet Reamer

Search Result 2, Processing Time 0.018 seconds

Machining Evaluation of Carbide Drill and Cermet Reamer Using Polishing Media Based on Drag Finishing Process (드래그 피니싱 공정 기반 폴리싱 연마제를 이용한 초경 드릴 및 서멧 리머 공구의 가공 평가)

  • Ha, Jeong-Ho;Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.23-30
    • /
    • 2022
  • After drilling, reaming is required to process a workpiece for obtaining an excellent surface quality. In general, a cermet is defined as a "composite of a ceramic hard phase and metal-bonded phase." Cermets have excellent abrasion resistance, thermal resistance, and performance in finishing operations that require surface roughness and processing precision. However, although cermets have significant advantages, research on them is insufficient. In this study, workpiece SM45C was machined using drills and cermet reamers. The cermet reamer was processed for drag finishing for 0, 4, and 6 min. The experimental results showed the effects of drag finishing on surface roughness and dimensional accuracy.

A Study on the Performance of Cermet Reamer for Transmission Parts (트랜스미션 부품 전용 가공 Cermet Reamer의 성능 평가에 관한 연구)

  • Cho, Jun Hyun;Ha, Byeong Cheol;Lee, Jong Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.17-22
    • /
    • 2019
  • In this study, Cermet Reamers for planet carrier was manufactured and the machining characteristics were analyzed through processing experiment. Cermet reamer with ∅14, ∅15, ∅18, and ∅21mm was used and machining characteristics were compared and analyzed by observing tool wear, machining hole dimensions and surface roughness. In the flank wear of the tool, the result is less than 0.2mm, which is the target value for each tool size. The experimental results of the machining hole dimensions show the results of the process control range of 3/100 or less according to the size of the tool. Also, the surface roughness measurement result showed a value of less than $0.5{\mu}m$ in the process control range for each tool size. As a result of observing the experimental results of each ∅, the results satisfied the process standard in both the tool wear, the machining hole dimension and the surface roughness.