• Title/Summary/Keyword: Ceria-doped tetragonal zirconia

Search Result 5, Processing Time 0.021 seconds

Preparation of Ceria-stabilized Zirconia Ceramics with Irregular Grain Shape (불규칙 입자형상을 갖는 세리아 안정화 지르코니아 세라믹스의 제조)

  • 강현희;이종국
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.372-379
    • /
    • 1999
  • Hihg-toughened ceria-stabilized tetragonal zirconia ceramics with irregular grain shape and undulated grain boundary was prepared by ceria doping. Irregularity of grain shapes was increased with the amount of doped ceria. But in case of the large amount of doped ceria grain boundary was migrated to the reverse direction of DIGM. Ceria-stabilized zirconia ceramics annealed at 1650$^{\circ}C$ for 2h after twice dippings into cerium nitrate solu-tion of 0.2M and sintering at 1500$^{\circ}C$ for 2h showed the highest grain boundary length with a value of 23.6$\mu\textrm{m}$ Ceria concentration difference between convex and concave sides in irregular grains was observed over 1 mol% but not observed in normal grains, Specimens with normal grain shape showed intergranular fracture mode whereas the specimens with irregular grain shape showed transgranular fracture mode.

  • PDF

Capsule Free Hot Isostatic Pressing of Ceria-Doped Tetragonal Zirconia Powder Crystallized in Supercritical Methanol

  • Shu Yin;Satoshi Uehida;Yoshinobu Fujishiro;Mamoru Ohmori;Tsugio Sato
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • Capsule free hot isostatic pressing (HIPing) of 12 mol% $CeO_2-88 mo% ZrO_2 (12CeO_2-88ZrO_2)$ powder was conducted at 1100~$1200^{\circ}C$ using the powder crystallized in supercritical methanol followed by supercritical drying. Porous $12CeO_2-88ZrO_2$ ceramics with ~35% open porosity, micropore diameter of ~23 nm and a narrow pore size distribution were fabricated by capsule free hot isostatic pressing at $1100^{\circ}C$. The porosity increased with decrease in HIPing temperature and was accompanied by a steady decrease in fracture strength.

  • PDF

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF

Space Charge Effect on Grain Growth Kinetics of Tetragonal Zirconia Polycrystal

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The effect of aliovalent dopents, $Nb_3O_5$ and MnO, on the grain growth kinetics of 12 mol% ceria stabilized tetragonal zirconia polycrystals (Ce-TZP) was studied. All specimens were sintered at $1550^{\circ}C$ for 20 minutes prior to annealing at different temperatures to study grain growth kinetics. Grain growth kinetics of Ce-TZP and 1 mol% $Nb_2O_5$ doped Ce-TZP (Ce-TZP/$Nb_3O_5$) during annealing at 1475, 1550, and $1600^{\circ}C$ adequately matched with square law $(D^2-D_\;o^2=k_at)$. However, grain growth in 1 mol% MnO suppressed grain growth in Ce-TZP by drag force exerted by $Mn^{+2}$ ions which segregated strongly to the positively-charged grain boundaries of Ce-TZP, $Nb_2O_5$ enhanced grain growth by increasing the concentration of vacancies of $Zr^{+4}$ ion and $Ce^{+4}$ ions. Surface analysis with X-ray photoelectron spectroscopy (XPS) showed the segregation of Mn+2 ions to grain boundaries. The kinetics of grain growth obtained in the base Ce-TZP and the Ce-TZPs with the aliovalent dopants were examined in the context of impurity drag effect and space charge effect.

  • PDF

Microstructure of Yttria-doped Ceria-Stabilized Zirconia Polycrystals (Yttria를 도핑한 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • Lee, J.K.;Kang, H.H.;Seo, D.S.;Lee, E.G.;Kim, H.
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.768-774
    • /
    • 1999
  • Yttia-doped ceria-stabilized ziconia polycrystals(Ce-TZP) was prepared by dipping method and its microstructure was investigated. By controlling doped-yttria content and annealing condition, yttria-doped Ce-TZP showed the microstructure with irregular grain shape and undulated grain boundary. Irregularity of grain shape increased with the amount of yttria doped, and severe undulated grain boundary was observed mainly at the surface region. In the case of yttria-doped Ce-TZP annealed at 1$650^{\circ}C$ for 2h after two dipping times into yttrium nitrate solution of 0.2M, it showed irregular grain shape both at the surface and at the interior region as well as the most severe irregularity. Hot pressed specimen had mean grain size of 0.3$\mu\textrm{m}$ and undulated grain boundary. All specimens with irregular grain shape were retained the tetragonal phase. The fracture toughness of yttria-doped Ce-TZP with irregular grain shape was over the value of 17.6MPa.m(sup)1/2.

  • PDF