• Title/Summary/Keyword: Cerebral Cortex

검색결과 444건 처리시간 0.025초

신맥(申脈) 혈위자극이 fMRI상 뇌활성화 변화에 미치는 영향 연구 (fMRI Study on the Brain Activity Induced by Manual Acpuncture at BL62)

  • 유경환;최일환;박히준;임사비나
    • Korean Journal of Acupuncture
    • /
    • 제23권2호
    • /
    • pp.89-103
    • /
    • 2006
  • Objectives: Recently, the effect of acupuncture has been approved not only in the East but also in the West, so the interest on acupuncture was greatly improved. Especially, functional magnetic resonance imaging(fMRI) was embossed as the study tool for the mechanism of acupuncture noninvasively and many studies on the mechanism of acupuncture using fMRI were carried out. We archived the fMRI study on the brain activity induced by manual acupuncture at BL62(申脈). Methods: The study was the acupuncture at BL62(申脈) and we acquired 9 fMRI results from 6 persons$(age\;20{\sim}30,\;4\;male\;and\;2\;female)$. These studies employed The block design for mapping brain activity and acupuncture was perfomed at BL62(申脈) on the left foot. Results: The brain related motor function was cerebellum, basal ganglia and cerebral cortex and thalamus connected these elements. In the result of this study, the regions of significant activation in the cerebellum was centered on the spinocerebellum in the anterior lobe, so we presumed that this result showed the input of stimulation by the acupuncture on BL62(申脈). But basal ganglia and cerebral cortex showed the regions of significant activation in the left larger than the right and regions of the cerebral cortex was the motor and sensory cortex. Such a result explained that acupuncture at BL62(申脈) could have influence the motor function and acupuncture at left BL62(申脈) could affect the right side through the activation of the left basal ganglia and cerebral cortex. Conclusions: In the theory of crossing needling at collaterals(繆刺論), it the pathogenic factor invaded in the Yang Heel channel(陽?脈) that was one of the eight Extra meridians(奇經八脈), we recognized the disease of the collateral channel and used contralateral BL62(申脈) for treatment of the Yang Heel channel(陽?脈). Moreover the result of this study could bear the construction that acupuncture at the left BL62(申脈) treats the contralateral lesion and this construction is related to the theory of crossing needling at collaterals(繆刺論).

  • PDF

N-6와 n-3 지방산이 풍부한 식이가 뇌졸중 유발 모델에서 뇌경색 크기 및 항산화 효소계에 미치는 영향 (Neuroprotective & antioxidant effects of diets high in n-6 and n-3 fatty acids in rat focal brain ischemia model)

  • 이희주;박경애;박명숙;이정희;전상은;최명애;최스미
    • Journal of Korean Biological Nursing Science
    • /
    • 제3권1호
    • /
    • pp.41-52
    • /
    • 2001
  • This study was undertaken to investigate the effects of n-6(corn oil) & n-3(fish oil) fatty acids on infarction size and the cerebral activities of antioxidant enzyme in rat focal brain ischemia model. Weaning Sprague-Dawley rats were fed with either corn oil supplemented diet(COD, 14% corn oil) or fish oil supplemented diet(FOD, 14% menhaden oil) for 6 weeks. The right middle cerebral artery was occluded for 2 hours with a silicon rubber coated nylon surgical thread. After 24 hours of recirculation, the rats were sacrificed and brain sections were photographed using CCD camera after staining with 2, 3, 5-triphenyltetrazolium chloride for 60 minutes in room temperature. The infarcted area was measured and the volume of infarction was calculated. Catalase(CAT), superoxide dismutase(SOD) activities, and fatty acid composition in the brain were also measured. The total and corrected infarction volumes were not significantly different between FOD and COD group. The docosagexaenoic acid(DHA) and DHA content/arachidonic acid(AA) ratio of the cerebral cortex, an index of defense against lipid oxidation, were significantly increased in FOD group compared to those of COD group(p<0.05). In the left cortex(non-infarction side) as well as the right cortex(infarction side) of FOD group, CAT and Cu/Zn SOD activities were higher than those of the COD group(p<0.05). However, CAT and Cu/Zn SOD activities were not significantly different between the left cortex(non-infarction side) and the right cortex(infarction side) of both FOD and COD group. GPx activities were also not significantly different between two groups. Our results demonstrate that the brain infarction size in FOD and COD were not significantly different. However, cerebral lipid composition and antioxidant enzyme activities in FOD and COD group were different. Fish oil, a source of n-3 polyunsaturated fatty acid(PUFA) and corn oil, that of n-6(PUFA) may have a protective effect against oxidative stress induced via different mechanisms.

  • PDF

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

Photochemically Induced Cerebral Ischemia in a Mouse Model

  • Park, Sung-Ku;Lee, Jung-Kil;Moon, Kyung-Sub;Joo, Sung-Pil;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권3호
    • /
    • pp.180-185
    • /
    • 2006
  • Objective : Middle cerebral artery occlusion[MCAO] has widely been used to produce ischemic brain lesions. The lesions induced by MCAO tend to be variable in size because of the variance in the collateral blood supply found in the mouse brain. To establish a less invasive and reproducible focal ischemia model in mice, we modified the technique used for rat photo thrombosis model. Methods : Male C57BL/6 mice were subjected to focal cerebral ischemia by photothrombosis of cortical microvessels. Cerebral infarction was produced by intraperitoneal injection of Rose Bengal, a photosensitive dye and by focal illumination through the skull. Motor impairment was assessed by the accelerating rotarod and staircase tests. The brain was perfusion-fixed for histological determination of infarct volume four weeks after stroke. Results : The lesion was located in the frontal and parietal cortex and the underlying white matter was partly affected. A relatively constant infarct volume was achieved one month after photothrombosis. The presence of the photothrombotic lesion was associated with severe impairment of the motor performance measured by the rotarod and staircase tests. Conclusion : Photothrombotic infarction in mice is highly reproducible in size and location. This procedure can provide a simple method to produce cerebral infarction in a unilateral motor cortex lesion. In addition, it can provide a suitable model for study of potential neuroprotective and therapeutic agents in human stroke.

대뇌 신경 교종 18F-FDG PET/CT 검사에서 포도당 부하 기법에 대한 고찰 (A Discussion on Glucose Loading Method in 18F-FDG PET/CTfor Cerebral Gliomas)

  • 최용훈;박민수;임한상;김재삼
    • 핵의학기술
    • /
    • 제27권1호
    • /
    • pp.62-65
    • /
    • 2023
  • Purpose The purpose of this study is to determine whether the glucose loading method (GLM) is useful in the differentiation of cerebral gliomas by comparing it with fasting images. Materials and Methods The patients were 70 people diagnosed with cerebral gliomas, and the equipment was Discovery 710 (GE Healthcare, MI, USA). All patients fasted for more than 6 hours, and fasting images and GLM were performed under the same imaging conditions, and the examination interval was 1 to 14 days. GLM administered 250 ㎖ of 10% glucose solution prior to radiopharmaceutical injection. SUVmax of cerebral glioma and SUVmean of cerebral cortex were measured and then compared and analyzed by tumor-to-normal brain cortex ratio (TNR). Statistical analysis confirmed the difference between the two images with an independent-sample t-test. Results The averages of GLM and fasting TNR were 1.26 and 1.09, respectively, which were 15.6% higher in GLM. In low-grade, the difference in TNR was insignificant at 4%, but in high-grade, 23%, GLM was high. There was a statistically significant difference between the two images (P=0.008), but there was no statistically significant difference in TNR in the low grade (P=0.473), and there was a very significant difference in the high grade (P=0.005). Conclusion GLM increased TNR for cerebral gliomas. In particular, it was found that the TNR increased more in the high grade. Therefore, GLM is considered to be useful for the differentiation of high-grade gliomas.

  • PDF

Ginsenoside Rb1 Modulates Level of Monoamine Neurotransmitters in Mice Frontal Cortex and Cerebellum in Response to Immobilization Stress

  • Lee, Sang-Hee;Hur, Jin-Young;Lee, Eun-Joo H.;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.482-486
    • /
    • 2012
  • Cerebral monoamines play important roles as neurotransmitters that are associated with various stressful stimuli. Some components such as ginsenosides (triterpenoidal glycosides derived from the Ginseng Radix) may interact with monoamine systems. The aim of this study was to determine whether ginsenoside Rb1 can modulate levels of the monoamines such as dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydorxytryptamine (5-HT), 5-hydroxindole-3-acetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP) in mice frontal cortex and cerebellum in response to immobilization stress. Mice were treated with ginsenoside Rb1 (10 mg/kg, oral) before a single 30 min immobilization stress. Acute immobilization stress resulted in elevation of monoamine levels in frontal cortex and cerebellum. Pretreatment with ginsenoside Rb1 attenuated the stress-induced changes in the levels of monoamines in each region. The present findings showed the anti-stress potential of ginsenoside Rb1 in relation to regulation effects on the cerebral monoaminergic systems. Therefore, the ginsenoside Rb1 may be a useful candidate for treating several brain symptoms related with stress.

대뇌 피질 경색으로 인한 하지 단마비 환자 한방치험 2례 (2 Cases of Lower Limb Monoplegia due to Brain Cortical Infarction)

  • 신정애;손동혁;유경숙;이진구;이영구
    • 대한한방내과학회지
    • /
    • 제22권2호
    • /
    • pp.263-269
    • /
    • 2001
  • Monoplegia is the paralysis of either the upper or lower limb. Monoplegia is commonly caused by an injury to the cerebral cortex; it is rarely caused by an injury to the internal capsule, brain stem, or spinal cord. Most cerebral cortex is derived from the occlusion of a brain cortex blood vessel due to thrombus or embolus. According to motor homunculus, lower limb monoplegia occurs from limited damage to the most upper part of the primary motor area(Brodmann's area 4, located in precentral gyrus). Clinically, lower limb monoplegia due to brain cortical infarction is commonly misunderstood as monoplegia due to spinal injury because the lesion is situated at the most upper part of precentral gyrus. We had many difficulties in finding lesion on brain CT, but we diagnosed two patients correctly by using an MRI, who have lower limb monoplegia due to brain cortical infarction oriental treatment.

  • PDF

동적인지 맵을 이용한 뇌 정보 처리 시스템의 감정 평가 알고리즘 (Emotion Evaluation algorithm of Brain Information System using Dynamic Genitive Maps)

  • 홍인택;김성주;서재용;김용택;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1243-1246
    • /
    • 2003
  • It is known that structure of Human's brain information system is controlled by cerebral cortex mainly. Cerebral cortex is divided by sensory area, motor area and associated area largely. Sensory area takes part in information from environment and motor area is actuation by decision as associated area determined. It is possible to copy brain information system by input-output pattern. but there is difficulty in modeling of memorizing new information. Such action is performed by Limbic Lobe and Papez circuit which is controlled by intrinsic emotion. So we need of definition of emotion's role in decision. In this paper, we define roles of emotion in intrinsic decision using Dynamic Cognitive Maps(DCMs). The emotion is evaluated by outside information then intrinsic decision performed as how much emotion variated. The dynamic cognitive maps take part in emotion evaluating process.

  • PDF

납(Pb)이 생쥐 대뇌피질내 몇 가지 효소황성 및 미세구조에 미치는 영향 (Effects of Lead on Enzyme Activities and Ultrastructure in Cerebral Cortex)

  • 이서은;유정규;최임순
    • Applied Microscopy
    • /
    • 제17권2호
    • /
    • pp.41-54
    • /
    • 1987
  • This experiment was performed to investigate the acute and chronic effects of lead on cerebral cortex. In acute treatment, mouse were injected with lead acetate at dose of 0.3 mmole/kg body weight, and in chronic treatment, mouse were supplied 0.03 M lead acetate sol. in the place of water. After treatment, mouse were sacrificed at time intervals of 24, 48, 72, and 96 hours in acute treatment and at time intervals of 4 weeks and 8 weeks in chronic treatment. In acute treatment, acetylcholinesterase activity is reduced at 72 hours and recovered at 96 hours in homogenate, and reduced at 24 hours and recovered at 72 hours in crude synaptosomes. In chronic treatment, acetylcholinesterase activity is increased in young mouse but reduced in mother mouse. Ultrastructural changes were composed of swelling of Golgi apparatus, nerve terminals with diminished synaptic vesicles, and vacuolated myeline lamellae of myelinated axon.

  • PDF

모듈라 신경망을 이용한 대뇌피질의 모델링 (Model for Cerebral Cortex Using Modular Neural Network)

  • 김성주;연정흠;조현찬;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.139-142
    • /
    • 2002
  • The brain of the human is the best model for the artificial intelligence and is studied by many natural, medical scientists and engineers. In the engineering department, the brain model becomes a main subject in the area of development of a system that can represent and think like human. In this paper, we approach and define the function of the brain biologically and especially, make a model for the function of cerebral cortex, known as a part that performs behavior inference and decision for sensitive information from the thalamus. Therefore, we try to make a model for the transfer process of the brain. The brain takes the sensory information from sensory organ, proceeds behavior inference and decision and finally, commands behavior to the motor nerves. We use the modular neural network in this model. finally, we would like to design the intelligent system that can sense, recognize, think and decide like the brain by learning the information process in the brain with the modular neural network.

  • PDF