• Title/Summary/Keyword: Ceramide.

Search Result 239, Processing Time 0.036 seconds

A Study on the Enhancement of Barrier Function and Improvement of Lipid Packing Structure in a 3D Skin Model by Ginsenoside Rg3 (Ginsenoside Rg3 에 의한 3D 피부 모델의 장벽 기능 강화 및 지질 패킹 구조 개선에 관한 연구)

  • Sunyoung Kim;Seol-Hoon Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2023
  • The skin's barrier structure is formed through the differentiation process of epidermal keratinocytes. It consists of corneocytes that are composed of keratin proteins and lipids that fill the spaces between them. During this process, the lipids such as phospholipid that made up the membrane of the basal layer cells of the epidermis are decomposed and replaced with newly synthesized components like ceramide. In this study, the effect of ginsenoside Rg3 components on the packing of the intercellular lipid structure of the skin barrier and the barrier function was confirmed. To confirm this, Rg3 components were treated during the differentiation process of 3D epidermal cells. The FT-IR and TEWL analysis on 3D epidermis showed an enhancement in the orthorhombic lipid packing and an improvement in barrier function. Additionally, in HaCaT cells, an increase in the expression of EVOL1 and EVOL4, which synthesize long-chain lipids, was detected, along with a decrease in CERS6, which synthesizes short-chain ceramide, and an increase in ACER6, which decomposes ceramide using phytosphingosine. This suggests the possibility that Rg3 affects lipid synthesis during the epidermal differentiation process, resulting in changes in barrier function.

Effect of Cellular Zinc on the Regulation of C2-ceramide Induced Apoptosis in Mammary Epithelial and Macrophage Cell Lines

  • Han, S.E.;Lee, H.G.;Yun, C.H.;Hong, Z.S.;Kim, S.H.;Kang, S.K.;Kim, S.H.;Cho, J.S.;Ha, S.H.;Choi, YunJaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1741-1745
    • /
    • 2005
  • Zinc is a trace element that is associated with a stimulation of immune function and regulation of ion balance for livestock production. In this study, the effect of zinc as inhibitor to apoptosis-induced cells was examined in vitro using mammary epithelial cell line, HC11 and macrophage cell line, NCTC3749. Cell viability, measured by MTT assay, indicated that 10 g/ml of zinc had a negative impact on cellular activity and 50 ng/ml was chosen for further testing. Apoptosis was induced in cells treated with C2-ceramide in serum-free media. DNA fragmentation and gene expression of acidic sphingomyelinase (a gene responsible for the progress of apoptosis) were distinctively low in zinc treated cells compared with those in non-treated controls. In conclusion, zinc is involved in the regulation of cell proliferation and apoptosis in mammary epithelial cells and macrophages.

Effect of Di-(2-ethylhexyl)-phthalate on Sphingolipid Metabolic Enzymes in Rat Liver

  • Jo, Ji-Yeong;Kim, Tae-Hyung;Jeong, Hye-Young;Lim, Sung-Mee;Kim, Hyung-Sik;Im, Dong-Soon
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • Di-(2-ethylhexyl)-phthalate (DEHP), the most widely utilized industrial plastizer and a ubiquitous environmental contaminant, can act on peroxisome proliferators-activated nuclear hormone receptor family (PPAR) isoforms. To understand the contribution of sphingolipid metabolism to DEHP-induced hepatotoxicity, effect of DEHP exposure on activities of sphingolipid metabolic enzymes in rat liver was investigated. DEHP (250, 500 or 750 mg/kg) was administered to the rats through oral gavage daily for 28 days. The activities of acidic and alkaline ceramidases were slightly increased in 250 mg/kg DEHP-administered rat livers and significantly elevated in 500 mg/kg DEHP-administered ones, although the level of 750 mg/kg DEHP-administered ones was not increased. Neutral ceramidase, acidic and neutral sphingomyelinases, sphingomyeline synthase and ceramide syhthase were not changed at all by DEHP exposure. Therefore, acidic and alkaline ceramidases might play important roles in DEHP-induced hepatotoxicity.

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.