• Title/Summary/Keyword: Ceramic powder

Search Result 1,857, Processing Time 0.024 seconds

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering (스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체)

  • 조경식;이광순;송진호;김진영;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2003
  • Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

The Effects of Hydration Retarding of Portland Cement by $MgSiF_6.6H_2O$ (규불화마그네슘에 의한 포틀랜드 시멘트의 수화 지연효과)

  • 한상호;이경희;정성철;김남호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.163-170
    • /
    • 1997
  • The retarding effects of MgSiF6.6H2O on the hydration of portland cement were studied. The setting time, flow value and compressive strength of mortar were measured and the mechanism of retardation was also studied by ion concentration in solution, SEM, BET, and X-ray diffraction. The results are as follows ; 1. Setting time was delayed by the addition of MgSiF6.6H2O. 2. The flow value of mortar decreases depending upon the amount of MgSiF6.6H2O. 3. The compressive strength was almost same or some increase on 28 days hydration. 4. The main retardation mechanism of MgSiF6 on the hydration of portland cement may be explained by the following hypothesis. MgSiF6 depressing the Ca++ and K+ ion concentration of cement paste solution be-cause of the recrystalization of K2SiF6 and CaF2 phase. The new products of K2SiF6 and CaF2 deposit on the surface of unhydrated cement powder and harzard the mass transfer through these layer. The low con-centration of Ca++, K+ ion in solution was decreasing the hydration rate of portland cement.

  • PDF

Effect of SiC Particle Size on the Microstructure and Mechanical Properties Of Al2O3-SiC Composite (Al2O3-SiC 복합재료의 미세조직 및 기계적 물성에 미치는 SiC 원료분말의 크기 영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • The effect of SiC particle size on the microstructures and mechanical properties of A1$_2$O$_3$-SiC composite was investigated. Two types of SiC powders having average particle sizes of 0.15 ${\mu}{\textrm}{m}$ and 3 ${\mu}{\textrm}{m}$ were used. The grain growth in the specimen containing 0.15 ${\mu}{\textrm}{m}$ SiC was effectively inhibited due to the fine SiC particles. However, after the formation of some abnormal grains, fast and exaggerated grain growth occurred which led to the microstructure of large grains with irregular shape. Fracture strength decreased due to the abnormal large grains. On the other hand, for specimen containing 3 ${\mu}{\textrm}{m}$ SiC showed normal grain growth behavior from initial sintering stage. Large SiC particles, however, effectively inhibited exaggerated grain growth after nucleation of a few abnormal grains. As a consequence, microstructure consisted of homogeneous elongated grains. In the A1$_2$O$_3$-2.5SiC(0.15 ${\mu}{\textrm}{m}$)-2.5SIC(3 ${\mu}{\textrm}{m}$) composite fabricated by mixing the two types of SiC powder, abnormal grain growth occurred. However, the good fracture strength was maintained regardless of microstructural changes in this specimen.

Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions (합성 및 원료 조건에 따른 γ-C2S의 순도)

  • Lee, Seok-Hee;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixing capacity and the production process with low CO2 emission, γ-C2S has attracted more attention of researchers. For the further development of γ-C2S applications in construction industry, this study aims to investigate the method for synthesizing high purity of γ-C2S. The influence of raw materials and calcination temperatures on the purity of γ-C2S was evaluated. Several Ca bearing materials were selected as the calcium source, the materials which's main component is SiO2 were used as the silicon source. Raw materials were mixed and calcined under different temperatures. The results revealed that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. In addition, a relatively economic synthesis method using natural mineral materials-limestone and silica sand as raw materials were developed for the practical application. The purity of synthetic γ-C2S was recorded up to 77.6%.

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF

Preparation and Properties of Zirconia-based Electrolytes from m-Zirconia and Yag Sol (m-지르코니아와 Yag 졸로부터 지르코니아계 전해질 제조 및 물성)

  • Kang, Keon-Taek;Han, Kyoung R.;Nam, Suk-Woo;Kim, Chang-Sam;Lee, Young-Soo;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.834-838
    • /
    • 2001
  • Attempts were made to improve mechanical properties of zirconia-based electrolyte by preparing yttria-stabilized cubic zirconia/alumina composite. It was performed by precipitating Yag precursor in aqueous m-zirconia slurry. The powder was separated and then followed by heat treatment with expecting yttria to react with m-$ZrO_2$ to give yttria stabilized zirconia and alumina to be dispersed homogeneously. When 17.8wt% Yag(6.3mol% $Y_2O_3$) was used, fracture toughness and strength were substantially improved from 1.44MPa${\cdot}m^{1/2}$ and 270Mpa for YZ8Y to 3.62MPa${\cdot}m^{1/2}$ and 447MPa respectively, but electrical conductivity at $^{\circ}$C in air was decreased from 0.126 to 0.057${\Omega}^{-1}cm^{-1}$. It seemed due to the presence of small amount of tetragonal zirconia. But when 21.58wt% Yag(8.0mol% $Y_2O_3$) was added, fracture toughness of 2.93MPa${\cdot}m^{1/2}$ and flexural strength of 388MPa were obtained with electrical conductivity of ${\Omega}^{-1}cm^{-1}$.

  • PDF

Growth Behavior of Aluminum Borate Whisker under 2.45 GHz Electromagnetic Irradiation (2.45 GHz 전자기파 조사하에서 Aluminum Borate Whisker의 성장 거동)

  • 김성완;이상근;김지경;이창희;안진모;신준식;박성수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.998-1004
    • /
    • 2003
  • With starting materials of two different powder mixtures, $Al_2$(S $O_4$)$_3$+xNa$_2$B$_4$ $O_{7}$$.$10$H_2O$(㏖ ratio; x=0.1, 0.7) and ${\gamma}$-Al$_2$ $O_3$+xNa$_2$B$_4$ $O_{7}$$.$10$H_2O$(㏖ ratio; x=0.1, 0.7), whisker-type $Al_{18}$B$_4$ $O_{33}$ particles were synthesized by using conventional and microwave heat-treatment. The effects of microwave, amount of flux and temperature on the growth of whisker-type $Al_{18}$B$_4$ $O_{33}$ particles were investigated by using X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). With increase of heat-treatment temperature and amount of flux, the size of whisker-type $Al_{18}$B$_4$ $O_{33}$ particles increased in both conventional and microwave heat-treated samples. However, compared to the conventional heat-treated samples, whisker-type $Al_{18}$B$_4$ $O_{33}$ particles were well grown for the microwave heat-treated samples.ted samples.

Luminescence Characteristics of ${Y_2}{O_3}$:Eu Phosphor Treated with $\alpha$-${Fe_2}{O_3}$Prepared by Two Different Methods Using $FeSO_4$.$7H_2$O ($FeSO_4$.$7H_2$O를 이용하여 서로 다른 방법으로 만들어진 $\alpha$-${Fe_2}{O_3}$를 표면처리한 ${Y_2}{O_3}$:Eu 적색 형광체의 발광 특성)

  • 김봉철;이춘엽;송윤호;서경수;이진호;이남양;김동국;박이순;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1115-1122
    • /
    • 2001
  • The tendency of the miximum brightness of $Y_2$O$_3$:Eu phosphor with various activator concentration, by different surface treatment methods as well as different exciting energies were investigated. The surface treatment methods were the adsorption method used $\alpha$-Fe$_2$O$_3$powder prepared emulsion-drying process and the precipitation method used FeSO$_4$/ethanol. Eu concentration of maximum brightness of $Y_2$O$_3$:Eu phosphor prepared by solid-solid state was changed with various exciting energies. The concentrations were 0.02 mol at VUV(147 nm) as well as 400 V and 0.03 mol at 5 kV. The phosphor treated both by adsorption method and precipitation method showed decreasing luminescent intensity with increasing amount of $\alpha$-Fe$_2$O$_3$, and the methods are chosen by exciting energy. Adsorption method was effective in a low voltage and VUV(147nm) region, and precipitation method was effective in the high voltage region.

  • PDF

Synthesis and Magnetic Properties of Nanosized Ce-substituted Yttrium Iron Garnet Powder Prepared by Sol-gel Method (졸-겔법에 의한 Cerium 치환 Nanosize YIG 분말의 합성 및 자기적 특성)

  • 장학진;김광석;윤석영;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1008-1014
    • /
    • 2001
  • Nanosize YIG powders added by Cerium which is exellent element in magneto-optical effect were synthesized by Sol-Gel method using Ethylene Glycol solvent. In 120 to 150 minute reaction time, stable sol solution which showed no change in viscosity, pH, and aging time was obtained. Monolithic YIG was synthesized at 80$0^{\circ}C$ with DTA and XRD measurement and its lattice parameter had a tendency to increase from 12.3921 $\AA$. Increasing annealing temperature from 80$0^{\circ}C$ to 105$0^{\circ}C$, average particle size was in the range of 40 nm to 330 nm. Saturation magnetization (M$_{s}$) value was increased from 18.37 to 21.25 emu/g due to enhancement of YIG crystallity and decreasing of orthoferrite phase. On the other hand, coercivity (H$_{c}$) value increased up to 90$0^{\circ}C$ and then decreased above 90$0^{\circ}C$. With increasing Ce addition, coercivity was almost not changed but saturation magnetization value was maximum at Ce 0.1 mol% and then decreased because of increasing a orthoferrite amount. Also, curie temperature (T$_{c}$) of YIG were not changed with Ce addition.ion.

  • PDF