• Title/Summary/Keyword: Ceramic paper

Search Result 1,196, Processing Time 0.031 seconds

Preparation of Ceramic Paper Containing Zeolites and Its Characterization (제올라이트를 함유하는 세라믹종이의 제조 및 이의 특성평가)

  • Yoo, Yoon Jong;Kim, Hong Soo;Jeon, Sang Ho;Jang, Gun Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.654-659
    • /
    • 2005
  • The ceramic paper, which could adsorb VOC's effectively, was made by paper-making method with zeolite and ceramic fiber as main constituents. By this experiment, the optimal composition of the slurry for the ceramic paper formation was established. SEM observation showed that zeolite powder was uniformly dispersed and adhered to the paper by applying inorganic binder. The two type zeolites content in the ceramic paper was 26 wt$\%$ and its BET surface area was 131 $m^{2}$/g. The thickness and the basis weight of the ceramic paper were 0.2 mm and 130 g/$m^{2}$ respectively, and it had sufficient tensile characteristics to withstand tensile stress without tearing during corrugation. The total inorganic content of the paper was 78 wt$ \% $ and organic content was 22 wt$\%$. The equilibrium loading amount of toluene at the toluene at the toluene partial pressure of 0.2 mmHg was 3.2 wt$\%$.

A Study on Ceramic Insert and Anchor Application for Railway Structures (철도구조물에 대한 세라믹 인서트 및 앵커의 적용 방안 연구)

  • Suh, Chang-Beom;Oh, Myoung-Ryoul;Li, Guang-Ri
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1177-1184
    • /
    • 2011
  • Ceramic insert and anchor has many advantages compared with existing steel products, therefor widely applied for concrete bridge, tunnel, railroad and building etc. in Japan. Ceramic insert and anchor start-to-used in Korea is no longer, but the product has already been applied to various construction sites and have been recognized for excellence. But now in Korea, the ceramic insert and anchor are not yet widely use like in Japan. This paper was an introduction to the ceramic insert and anchor, and detailed explained the product excellent performance. Ceramic insert and anchor can be applied to many areas, but in this case the focus was the application of ceramic insert and anchor for railway structures. In this paper we detailed compared the ceramic products with existing steel products in their respective characteristic, and analyzed on their application in domestic and foreign.

  • PDF

Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures

  • Bae, Chang-Jun;Ramachandran, Arathi;Chung, Kyeongwoon;Park, Sujin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • Ceramic processing to fabricate 3D complex ceramic structures is crucial for structural, energy, environmental, and biomedical applications. A unique process is ceramic stereolithography, which builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This approach directly writes layers in liquid ceramic suspension and allows one to fabricate ceramic parts and products having more accurate, complex geometries and smooth surfaces. In this paper, both UV curable materials and processes are presented. We focus on the basic material principles associated with free radical polymerization and rheological behavior, cure depth and broadening of cured lines, scattering at ceramic interface and their corresponding simulation. The immediate potentials for ceramic AM to change industry fabrication are also highlighted.

Surface modified ceramic fiber separators for thermal batteries

  • Cheong, Hae-Won;Ha, Sang-Hyeon;Choi, Yu-Song
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.308-311
    • /
    • 2012
  • A wide range of possible hazards existing in thermal batteries are mainly caused by thermal runaway, which results in overheating or explosion in extreme case. Battery separators ensure the separation between two electrodes and the retention of ion-conductive electrolytes. Thermal runaways in thermal batteries can be significantly reduced by the adoption of these separators. The high operating temperature and the violent reactivity in thermal batteries, however, have limited the introduction of conventional separators. As a substitute for separators, MgO powders have been mostly used as a binder to hold molten salt electrolyte. During recent decades the fabrication technology of ceramic fiber, which has excellent mechanical strength and chemical stability, has undergone significant improvement. In this study we adopted wet-laid nonwoven paper making method instead of the electrospinning method which is costly and troublesome to produce in volume. Polymeric precursor can readily be coated on the surface of wet-laid ceramic paper, and be formed into ceramic film after heat treatment. The mechanical strength and the thermo-chemical stability as well as the wetting behaviors of ceramic separators with various molten salts were investigated to be applicable to thermal batteries. Due to their excellent chemical, mechanical, and electrical properties, wet-laid nonwoven separators made from ceramic fibers have revealed positive possibility as new separators for thermal batteries which operate at high temperature with no conspicuous sign of a short circuit and corrosion.

The Design of Dielectric Ceramic Antenna for GPS (GPS 용 유전체 세라믹 안테나의 설계)

  • 김현철;노용래;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.977-984
    • /
    • 1996
  • This paper analyzes the performance of a rectangular dielectric ceramic antenna by the theoretical cavity model such as input impedance resonant frequency quality factor efficiency and bandwidth. Through a compu-ter simulation variation of the antenna characteristics is found as a function of the antenna parametes. (permit-tivity permeability antenna size etc) Based on the results we propose a new design method for the dielectric ceramic antenna to be employed in Global Positioning Systems.

  • PDF

Printability of coating layer with nano silica sol for inkjet printing high-end photo paper (나노 실리카 졸을 이용한 잉크젯 프린팅용 고품질 인쇄용지 도공층의 인쇄적성)

  • Kim, Hye-Jin;Nahm, Sahn;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.352-358
    • /
    • 2019
  • In recent years, printing paper with a function of information delivery and aesthetic value has attracted a great attention with increasing market demand for coated paper that is capable of high quality printing. The coated paper for inkjet printing with high-quality of photorealistic grades requires the coating layer with a good wettability and porous surface structure in order to improve the printability of ink. In this study, the coated paper was prepared using polyvinyl alcohol (PVA) and surface treated nano silica sol with silane coupling agent. It was confirmed that the coating layer with surface treated nano silica sol showed a uniform pore distribution and flat surface roughness. Glossiness of the prepared printing paper was similar to that of commercial high quality photo paper. Especially, the coated paper with surface treated nano silica sol showed improved printability with excellent roundness of the printed dot of ink. These results indicates that the coating layer with excellent wettability and uniform pore distribution can be formed by using the nano-silica particles with improved dispersibility through the surface treatment of the silane coupling agent.

Dispersion Characteristics of Slurry and Preparation of Ceramic Paper (세라믹섬유지의 제조 및 슬러리 분산특성)

  • Yoo, Yoon-Jong;Kim, Joon-Soo;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1042-1047
    • /
    • 2002
  • The sedimentation characteristics of ceramic fiber were analyzed when viscosity of the slurry for ceramic paper formation was varied and zeta potential change and degree of dispersion with pH were studied as well. The proper viscosity of the slurry for dispersion of fibers was between 28 and 31 cps. Zeta potential of the slurry was sensitively changed with pH adjustment and showed maximum value of -35~-36 mV at ph 7.5~9.5, which indicated better dispersion of ceramic fiber as zeta potential of the slurry was increased. The sedimentation rate of ceramic fiber in a slurry was reported minimum at the maximum zeta potential. Water content of the casted paper should be lower than 83% after vacuum dehydration for retention of binder and lower than 62% after press rolling for wet paper handling. The obtained ceramic paper had tensile strength and basis weight, $102 kgf/cm^2$ and $98 g/m^2$, respectively.

Characterization of Environment-Friendly Ceramic Coating Materials (친환경적인 분말형 세라믹 페인트의 특성평가)

  • 이제철;신영훈;김태현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • In this paper, we described about the characteristic evaluation of environment-friendly ceramic paint with calcium-silicate mineral as a main binder. Particularly, we performed discharge of the environmental poisoning materials(e.g. VOCs, heavy metal, etc.), and properties of paint slurry and coating film of the ceramic paint. In the comparison of the ceramic paint with natural paint and mineral paint which were known as our environment-friendly paints, ceramic paint had good characteristics in the environmental safety and properies of wet slurry and dried coating film.

  • PDF

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

A study on Ash size and its distribution on cleaning of ceramic candle filter (세라믹캔들필터 집진 전후 Ash의 크기 및 분포에 관한 연구)

  • Jeong, Jin-Do;Lee, Jung-Beom;Kim, Jong-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1639-1648
    • /
    • 1996
  • Protection of gas turbine blade from its erosion and abrasion at high temperature and pressure is the first goal to cleanup the hot gas upstream for IGCC and PFBC. Ceramic filters represent an attractive technology for particle removal at high temperature and high pressure condition. They have demonstrated being a good system for improvement of thermal efficiency and reduction of effluent pollutants in advanced coal-based power systems such as IGCC and PFBC. Ceramic filter elements currently being developed were evaluated in the previous paper. In this paper, we measured the ash size and distribution on cleaning of ceramic candle filter. The results are as follows : in this experimental range, ceramic candle filter was shown to be fully adequate for the removal process of dust under high temperature and pressure. Also filtration efficiency of ceramic candle filter was higher than 98% compared with the regulation limit of particle size in gas turbine inlet.