• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.023 seconds

Expansion Characteristics of the Hydrated Sodium Silicate which Synthesized by Hydrothermal Reaction (열수반응으로 합성된 수화규산소다의 팽창 특성)

  • Cho, Ho-Yeon;Kong, Yang-Pyo;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.845-850
    • /
    • 2008
  • Hydrated sodium silicate was synthesized by hydrothermal reaction using anhydrous sodium silicate. The optimum additions of water was 25wt% to make hydrated sodium silicate with homogeneous and purposed water contents. Porous ceramics with homogeneous microstructure and spherical closed pore can be fabricated by elimination of the large pores(a few mm in size) which was formed during first heat treatment through the decomposition of water. Spherical closed pore was formed above $600^{\circ}C$ and the pore size was increased with increasing second heat treatment temperature due to growth of pores. The size of spherical closed pore was varied from 35 to $233\;{\mu}m$ and specific gravity was varied from 0.2 to 1.02 depending on the combinations of the first and second heat treatment temperature.

Nanocomposite Ni-CGO Synthesized by the Citric Method as a Substrate for Thin-film IT-SOFC

  • Wang, Zhenwei;Liu, Yu;Hashimoto, Shin-ichi;Mori, Masashi
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.782-787
    • /
    • 2008
  • Ni-ceria cermets have been extensively investigated as candidates for the anode in intermediate-temperature solid oxide fuel cells. We have used the citric method to synthesize nanocomposite powders consisting of NiO (Ni metal content: $40{\sim}60%$ by volume) highly dispersed in $Ce_{0.9}Gd_{0.1}O_{1.95}$ (CGO). The microstructure characteristics and sintering behaviors of the nanocomposites were investigated. No impurity phases were observed and the shrinkage of these substrates matched well with that of a CGO electrolyte with a specific surface area of $11\;m^2/g$. Densification of the CGO electrolyte layer to $<5\;{\mu}m$ thickness was achieved by co-firing the laminated electrolyte with the porous NiO-CGO substrate at $1400^{\circ}C$ for 6 h.

Electric-Field Induced Degradation of Ionic Solids

  • Chun, Ja-Kyu;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Degradation of performance and life time of a functional material or device thereof is induced, to a great extent, by mass transfer in the material that is driven by various thermodynamic forces imposed intentionally or accidentally during its operation or service. The forces are any gradient of intensive thermodynamic variables, component chemical potentials, electrical potential, temperature, stresses, and the like. This paper reviews electric-field induced degradation phenomena in ionic solid compounds including insulation resistance degradation, crystal shift, microstructural alterations, compositional unmixing, and compound decomposition. Their inner workings are also discussed qualitatively.

Effects of Stearic Acid on the Watertightness Properties of the Cementitious Materials (시멘트 재료의 수밀성에 대한 스테아르산의 영향)

  • Na, Seung-Hun;Kang, Hyun-Ju;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • It is well known that the properties of concrete such as the compressive strength, water permeability, water tightness and durability are affected by micro-structure in hardened cement paste. Especially, for durability of concrete, watertightness of cementitious materials is the most critical property among various properties. Recently, many types of materials as organic and/or inorganic materials are used for watertightness of concrete. In this study, The effect of Stearic Acid at $0.5\;wt%{\sim}3.0\;wt%$ adding ratios on the hydration and watertightness property of cement were investigated. And we also discussed the changing of microstructure in hardened cement paste by addition of Stearic Acid. Cement paste with Stearic Acid showed improvement of watertightness by reducing of cement total pore volume and decomposition of Stearic Acid.

Synthesis and Conductivity Properties of $LaNiO_3$ Ceramic Conductors ($LaNiO_3$전도성 세라믹의 합성과 도전특성)

  • Cho, Jung-Ho;Cho, Joo-Hun;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.406-409
    • /
    • 2001
  • The conductivity properties and synthesis of $LaNiO_{3}$ ceramics from $La_{1+\delta}NiO_{3}(\delta=-0.06,0,0.06)$ were investigated. A single perovskite phase was realized at $800^{\circ}C$. $La_{2}NiO_{4}$ and other unexpected oxide were observed at $1000^{\circ}C$. The Microstructure was showed clearly that it is a low density porous material. $LaNiO_3$ ceramic showed a metallic conductivity. The conductivity of La rich samples had a higher value than the La poor samples.

  • PDF

Ultra Precision Machining of Machinable Ceramic by Electrolytic In-process Dressing (연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 가공)

  • 원종구;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.223-226
    • /
    • 2002
  • Appropriate design/manufacturing conditions, to give outstanding material properties to the $Si_3$$N_4$-BN and AIN-BN based composite materials, will be investigated using the experimental design methods. Ultra-precision machinability of the developed ceramics will be systematically studied in the viewpoint of microstructure and material properties. Also, finite element methods will be applied to define basic principles to significantly improve machinability and various properties. Basic experiments will be performed to develop optimum ultra-precision machining technologies for the developed ceramics. For ultra-precision lapping machining, need to develop a ultra-precision lapping system, suitable metal bonded diamond wheel, and appropriate condition of ultra-precision lapping machining.

  • PDF

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Environmental Influences on Gas pressure Sintering of $Si_3N_4$ (질화규소의 가스압 소결에 미치는 환경 영향)

  • 김인섭;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.309-315
    • /
    • 1993
  • Gas pressure sintering is a promising process in various densification methods of high strength Si3N4 ceramics. Environmental influences on gas pressure sintering of Si3N4 was investigated with the variationof packing powder, specimen container and N2 gas pressure. The specimens had higher density, larger weight loss and inhomogeneous color in graphite specimen container than in SN26 crucible. The variations of sintering densities in various packing powders (Si3N4, SN26, AlN, BN) were very small but SiC powder was synthesised in graphite crucible with Si3N4 packing powder, aluminium oxynitride compounds were synthesised in SN26 crucible with AlN packing power. Also N2 gas pressure over 20kg/$\textrm{cm}^2$ reduced the densification of Si3N4 in one step-gas pressure sintering. As the result of two step-gas pressure sintering at 700kg/$\textrm{cm}^2$ for 15min., relative density of 99.9% and 3-point bending strength of 1090MPa and dense microstructure of 3~4${\mu}{\textrm}{m}$ grain size were obtained.

  • PDF

The Effect of $Al_2O_3$ Reinforcement Shapes on the Microstructure and Mechanical Properties of Mullite-Zirconia Composites (Mullite-Zirconia 복합체의 미세구조와 기계적 성질에 미치는 $Al_2O_3$ 강화재 형상의 영향)

  • 박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.846-852
    • /
    • 1995
  • The multiply reinforced mullite-zirconia composites were prepared with addition of Al2O3 particles, platelets, and fibers. The sinter-HIP specimens (presintered at 1$700^{\circ}C$ and hipped at 1$600^{\circ}C$) showed that the fracture toughness of Al2O3 fiber reinforcement (4.4 MPa.{{{{ SQRT {m} }}) was higher than those of platelet (4.0 MPa.{{{{ SQRT {m} }}) and of particle (3.9MPa.{{{{ SQRT {m} }}) reinforcement, whereas the fracture strength of Al2O3 particle reinforcement (304 MPa) was higher than those of platelet (293MPa) and of fiber (248MPa) reinforcement.

  • PDF

Influence of $ZrO_2$ on Microstructure and Mechanical Strength of Sintered Magnesia (마그네시아 소결체의 미세구조와 강도에 미치는 $ZrO_2$의 영향)

  • 이윤복;이종현;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1053-1059
    • /
    • 1994
  • The influence of ZrO2 addition on microstructre and mechanical strength of magnesia ceramics were discussed. ZrO2 was existed as a cubic phase resulted from MgO solubility into ZrO2 on firing at temperature range from 130$0^{\circ}C$ to 1$600^{\circ}C$ for 2 h. The addition of ZrO2 markedly promoted the densification of MgO also above 150$0^{\circ}C$ and the sintered density at 1$600^{\circ}C$, 2 h reached to 95.2% of the theoretical. The solubility of MgO into c-ZrO2 was about 7.68 wt% and it was segregated at grain boundary on cooling to room temperature. ZrO2 existing as a second phase retarded the grain growth of MgO. The bending strength were increased to 240 MPa with the amount of ZrO2.

  • PDF