• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.022 seconds

Study on Synthesis and Mechanical Properties of (B.Si)C Composite by Self Propagating High Temperature Synthesis Chemical Furnace (SHS 화학로에 의한 (B.Si)C 복합체의 합성 및 기계적 특성에 관한 연구)

  • 이형복;조덕호;이재원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.413-418
    • /
    • 1995
  • The (B.Si)C composite was prepared form the mixture of metal boron, silicon, and carbon powders in Ar atmosphere by Self-propagating High-temperature Synthesis Chemical Furnace. The characterization of synthesized power and sintered body were investigated. The microstructure of sintered body suggested that SiC boundary was made between B4C grains. The most excellent mechanical properties, the relative density of 95% oftheoretical value, 3 point flexural strength of 360MPa, and fracture toughness of 3.6MN/m3/2 could be obtained in 80wt% B4C-20 wt% SiC composite were obtained.

  • PDF

Chemical Vapor Deposition of Silicon Carbide by the Pyrolysis of Methylchlorosilanes (메틸클로로실란류의 열분해를 이용한 탄화규소의 화학증착)

  • 최병진;박동원;조미자;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.489-497
    • /
    • 1995
  • The DDS((CH3)2SiCl2)+H2 gas mixture, where C atoms exist in excess in the molecules, was used for chemical vapor deposition of SiC in order to prevent codeposition of free Si in MTS(Ch3SiCl3)+H2 system. The deposition rate was more rapid than MTS, however differ from that of MTS, it decreased after shwoing a maximum at 140$0^{\circ}C$. The stoichiometry was highly improved by using the DDS as a precursor, although there exist a little pyrolytic C at 150$0^{\circ}C$. The preferred orientation was (220) in MTS, however, it changed to (111) in DDS. The microstructure of the layer deposited at lower temperature were dense, however it grew coarse with the increase in the temperature.

  • PDF

Dispersion and Forming of Alumina Powders via Crosslinkable Organic Molecules (가교가능한 유기화합물을 이용한 알루미나의 분산과 성형)

  • 김봉호;신평우;백운규;정연길;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.217-226
    • /
    • 1995
  • Alumina powders were dispersed using crosslinkable organic molecules by electrosteric stabilization and then consolidated by crosslinking of organic molecules. The effect of processing variables such as the physicochemical properties of both solvent media and organic molecules, the proportions of mixed organic media, etc. were studied. FT-IR was used todeduce the mechanism of organic molecules adsorption on the alumina particle surfaces. The adsorption characteristics and the electrokinetic behavior of alumina suspensions were correlated with the stability of particle in alumina suspension using rheological measurements. The green body of alumina consolidated by the chemical crosslinking of the adsorbed organic molecules after the alumina suspension had been stabilized was tough enough for green machining and the sintered alumina fabricated by this proposed process also showed a high bending strength and a homogeneous microstructure.

  • PDF

The Effect of Microstructure on the Ionic Conductivity in the $Bi_2O_3-CaO$ System ($Bi_2O_3-CaO$계에서의 미세구조가 이온 전도도에 미치는 영향)

  • 백현덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The grain boundary effect on the ionic conductivity was investigated using a.c. admittance analysis in (Bi2O3)0.715(CaO)0.285 oxygen-ion conducting solid electrolyte. As a separated arc representing grain boundary polarization was not observed in the admittance plane, bulk conductivity was measrued for samples with various grain sizes in the temperature range from 48$0^{\circ}C$ to 72$0^{\circ}C$ and the conductivity distribution between grain interior and grain boundary was determined by the reported analytical methods. In the above temperature range, grain boundary worked as a high conductive path instead of blocking layer and ionic conduction through grain boundary was significant. The activation energy for conduction through grain and grain boundary was 78 and 106 kJ/mol, respectively.

  • PDF

Structure and Microwave Dielectric Characteristics of Ba6-3x(Sm1-yNdy)8+2x(Ti0.95Sn0.05)18O54 Ceramics as a Function Of Sintering Time

  • Li, Yi;Chen, Xiang Ming
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.360-364
    • /
    • 2003
  • Effects of sintering time upon the structures and microwave dielectric characteristics of co-substituted $Ba_{6-3x}$/S $m_{8+}$2x/ $Ti_{18}$ $O_{54}$ ceramics (x=2/3) were investigated. Prolonged sintering had significant effects upon the qf value and temperature coefficient, and a high Qf value (10,600 GHz) was obtained in the present ceramics combined with high-$\varepsilon$ (80) and near-zero temperature coefficient.t..

Effects of Substrate Temperature and Sputter Gas on the Physical Characteristics, Chemical Composition and Preferred Orientation of ZnO Thin Films (기판온도 및 스퍼터가스에 따른 ZnO 박막의 우선배향성, 화학조성, 물리적특성 변화)

  • 김병진;조남희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1227-1234
    • /
    • 1997
  • ZnO thin films were prepared by rf-magnetron sputter at various conditions. Crystallinity, microstructure, chemical composition, and optical composition, and optical properties of the films were investigated as functions of substrate temperature (R. T.-50$0^{\circ}C$) an sputter gas (O2/Ar=0-50%). ZnO thin films grown at 50$0^{\circ}C$ with sputter gas of pure argon as well as at R. T. with sputter gas of a mixture of argon & oxygen(O2/Ar=2%) exhibit a strong tendency of (002) preferred orientation, compared with a considerable random orientation at the other conditions. The thin films with (002) preferred orientation has a chemical stoichiometry of Zn/O-1.01, a band gap of 3.3eV, and a packing density of 98% respectively.

  • PDF

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

Investigation on the Preparation and Electrical Conductivity of $CeO_2$-System Solid Electrolytes ($CeO_2$계 복합산화물 고체 전해질 제조와 전기전도 특성에 관한 연구)

  • ;dladydan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.155-162
    • /
    • 1995
  • Solid oxide electrolytes of the MCe1-xGdxO3-x/2 (M: Ba, Mg. x=0.0-0.20) system were prepared using powders synthesized by the "liquid mix" method and calcined from the cross-linked polyacrylic polymer. The specimens were analyzed using XRD and SEM with EDX, and the sintering behavior of the electrolytes and their electrical conductivity were also studied. Although Mg-cerate is relatively inferior to Ba-cerate in the sinterability and chemical homogenity(EDX analysis data), both the Ba- and the Mg-cerate electrolytes at 80$0^{\circ}C$ show their maximum conductivities at x=0.10 and their values are in the same order of magnitude, i.e., 3.5$\pm$0.17.10-2(ohm.cm)-1.ohm.cm)-1.

  • PDF

Crystallization of Lithium Zinc Silicate Glass System (Li2O-ZnO-SiO2계 유리의 결정화)

  • 이승범;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.227-234
    • /
    • 1987
  • With the content of ZnO varing from 10.5 to 47.4 wt%, the crystallization of lithium zinc silicate glass was investigated by DTA, XRD, and SEM. In this work P2O5 was used as nucleation agent. The crystallization temperature was found to increase with the content of ZnO and the microstructure of formed crystalling phases was studied through the scanning electron microscopy. According to the XRD analysis, the crystal phases formed are summarized as follows. 1) The major phases are lithium orthosilicate, lithium disilicate and quartz at 10.5 wt% ZnO. 2) Lithium zinc silicate polymorphous and cristobalite occur in the composition varying 21.3 to 30.8 wt% ZnO. 3) At composition containing 47.4wt% ZnO some quantity of willemite is formed.

  • PDF

Studies on the Development of Cement of Slag-Gypsum System (슬래그-석고계 시멘트 개발연구)

  • 최상흘;오희갑;지정식;엄태선
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.217-221
    • /
    • 1980
  • Hydration of granulated blastfurnace slag-gypsum-$C_4A_3\bar{S}$ clinker/modified converter slag clinker was investigated to develop the cement of slag-gypsum system. In the hydration of granulated slag-gypsum-$C_4A_3\bar{S}$ system clinker, the hydrates such as ettringite, CSH gel and $AH_3$ gel were formed, and the strength of hardened body would be increased by forming compact microstructure. The modified converter slag clinker which contains alite and calcium aluminate was synthesized, and the hydration reactivity of the cement from this clinker, gypsum and granulated slag is similar to usual portland cement, and the hydrates were mainly CSH, ettringite, and $Ca(OH)_2$.

  • PDF