• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.03 seconds

Effect of Granulation and Compaction Methods on the Microstructure and Its Related Properties of SOFC Anode (과립형성 및 성형방법에 따른 SOFC 음극의 미세구조 및 특성)

  • Heo, Jang-Won;Lee, Jong-Ho;Hwang, Jin-Ha;Moon, Joo-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • It is well known that the anode substrate of anode-supported type SOFC should have high electrical conductivity and high gas permeability to minimize the polarization loss of the cell performance during operation. In this study, we made anode substrates of SOFC with two different methods, which gave different anode microstructures, especially different pore structures with each other. We performed electrical and microstructural characterization of Ni/YSZ cermet anode via extensive measurements of its electrical conductivity and gas permeability combined with adequate image analysis based on quantitative stereological theory

A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061 ($Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구)

  • Seo, S.Y.;An, B.G.;Lee, K.Y.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가

  • Kim H.;Lee KY;Kim DJ;Lee MH;Seo WS
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear. Alumina and zirconia (3Y-TZP) are using in clinical application worldwide and there are many good test reports. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite having low temperature degradation-free character and high fracture tough . was developed and it leads the lower wear 3f polyethylene than alumina and zirconia. In the present study, in order to optimise the microstructure of low temperature degradation (LTD)-free zirconia/alumina composite for the best wear resistance of polyethylene, various compositions of (LTD)-free zirconia/alumina composites were fabricated, and the sliding wear of UHMWPE against these novel composites were examined and compared with that against alumina and zirconia ceramics used for total hip joint heads.

  • PDF

Influence of Sintering Temperature on Magnetic Properties of Ni-Zn-Cu Ferrites Used for Mangetic Shielding in NFC (NFC의 자기차폐용 Ni-Zn-Cu 페라이트의 자기특성에 미치는 소결온도의 영향)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.132-135
    • /
    • 2016
  • This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni-Zn-Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of $(Ni_{0.7}Zn_{0.3})_{0.96}Cu_{0.04}Fe_2O_4$ are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature ($1225-1250^{\circ}C$), the highest permeability and lowest magnetic loss can be obtained.

Microstructure and Properties of ST-based Ceramic Thin Film (ST계 세라믹 박막의 미세구조 및 특성)

  • Kim, J.S.;Oh, Y.C.;Cho, C.N.;Shin, C.G.;Song, M.J.;Choi, W.S.;Kim, K.J.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.106-109
    • /
    • 2005
  • The $(Sr_{1-x}Ca_x)TiO_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/$SiO_2$/Si) using RF sputtering method with substitutional contents of Ca. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[$\AA$/min]. The dielectric constant was increased with increasing the substitutional contents of Ca, while it was decreased if the substitutional contents of Ca exceeded over 15[mol%]. The capacitance characteristics had a stable value within ${\pm}4$[%] in temperature ranges of -80~+90[$^{\circ}C$].

  • PDF

A Study on the Microstructure and Thermal Sensor Devices of the Thin Films in the $BaTiO_3$ Systems ($BaTiO_3$계 세라믹의 미세구조와 열전센서에 관한 연구)

  • Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.135-139
    • /
    • 2005
  • Thin films of $BaTiO_3$ system were prepared by radio frequency(rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperatures. Second heat treatments of the specimen were performed in the temperature range of 400 to $1350^{\circ}C$. X-ray diffraction patterns of $BaTiO_3$ thin films show that the specimen heat treated below $600^{\circ}C$ is an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. In the specimen heat-treated at $1300^{\circ}C$, a lattice constant ratio (c/a) was 1.188. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films of the specimen heat treated in between 900 and $1100^{\circ}C}$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

Preparation and PTCR Characteristics of Semiconductive Nano (Ba1-xSbx)TiO3 Ceramic PowderS by Hydrothermal Process (수열합성법에 의한 반도성 나노 (Ba1-xSbx)TiO3 분말제조 및 PTCR 특성평가)

  • Choe, Yong-Gak;Lee, Jong-Hyeon;Lee, Hyeok-Hui;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.169-175
    • /
    • 2002
  • Semiconductive nano $(Ba_{1-x}Sb_x)TiO_3$ powders were synthesized by the hydrothermal process and Sb was simultaneously doped in the hydrothermal condition. $(Ba_{1-x}Sb_x)TiO_3$ powders obtained from optimum condition(at 20$0^{\circ}C$ for 3hr) exhibited spherical shape, high purity and nano size. The PTCR characteristics was observed when 0.1 and 0.2 mole% Sb were added and sintered at over 130$0^{\circ}C$ for 1 hour, respectively. And The ceramics exhibit the PTCR characteristics with a resistively jump $ratio($\rho$_{max}/$\rho$_{min})$ of about $10^4$. Also we found that PTCR characteristics were dependent on the microstructure.

Transformation of PEO coatings from crater to cluster-based structure with increase in DC voltage and the role of ZrO2nanoparticles

  • Rehman, Zeeshan Ur;Shin, Seong Hun;Koo, Bon Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.111-111
    • /
    • 2016
  • Two step PEO ceramic coatings were formed on AZ91 magnesium alloy in $ZrO_2$ nanoparticles and $K_2ZrF_6$ based colloidal electrolyte solution for various voltages. Surface and layers tructure of the coatings was analyzed using SEM (ScanningElectronMicroscope). Structure analysis revealed that surface of the coating was transferred from individual pancake or craters-based structure to cluster-based structure with increasing the voltage of the secondary step process. Further, it was confirmed that the cluster zone was richin Zr-based complexes and formed due to high intensives parks. Increase in the Zr contents as discovered from the EDS analysis confirmed the rise in amorphous form of the Zr-based species, which justified the results of XRD where no increase in the intensity of Zr-based species was observed with increase in voltage. Potentiodynamic polarizariotion and impedance spectroscopy techniques were used to evaluate the corrosion performance of the coatings. The highest corrosion resistance was found for coatings prepared at 240V. The same specimen was found having highest and uniform vickers hardness ~1070.5 HV. The superior mechanical and electrochemical properties of the said coating can be attributed to the defect-less microstructure and the optimal role of $ZrO_2$ nanoparticles in the secondary PEO process at 240V.

  • PDF

The Effect of Cu Reflow on the Pd-Cu Alloy Membrane Formation for Hydrogen Separation (수소분리용 Pd-Cu 합금 분리막의 Cu Reflow 영향)

  • Mun, Jin-Uk;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.255-262
    • /
    • 2006
  • Pd-Cu alloy membrane for hydrogen separation was fabricated by sputtering and Cu reflow process. At first, the Pd and Cu was continuously deposited by sputtering method on oxidized Si support, the Cu reflow process was followed. Microstructure of the surface and permeability of the membrane was investigated depending on various reflow temperature, time, Pd/cu composition and supports. With respect to our result, Pd-Cu thin film (90 wt.% Pd/10 wt.% Cu) deposited by sputtering process with thickness of $2{\mu}m$ was heat-treated for Cu reflow The voids of the membrane surface were completely filled and the dense crystal surface was formed by Cu reflow behavior at $700^{\circ}C$ for 1 hour. Cu reflow process, which is adopted for our work, could be applied to fabrication of dense Pd-alloy membrane for hydrogen separation regardless of supports. Ceramic or metal support could be easily used for the membrane fabricated by reflow process. The Cu reflow process must result in void-free surface and dense crystalline of Pd-alloy membrane, which is responsible for improved selectivity oi the membrane.