• Title/Summary/Keyword: Ceramic fracture

Search Result 832, Processing Time 0.021 seconds

Fracture Behavior and Mechanical properties of WC-Co Subjected to Thermal Shock (WC-Co의 열충격 후 파괴 현상과 기계적 성질)

  • ;Joh
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 1990
  • WC-Co composites are widely used as cutting or drilling tools because of their high hardness, strength, and fracture toughness. The working temperature is, however, generally in the range of 300-$700^{\circ}C$ so thermal shock fracture of WC-Co can occur. In this study, the strength, fracture toughness and fracture surface of 16wt% Co bonded tungsten carbide composites before and after thermal shock were observed.

  • PDF

A Study on the Coated Characteristics of Ceramic Tools (코팅공구의 절삭성능에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.96-101
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc.. Ceramic toolsare likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ther2efore ceramic tools are suitable for continuous cut in turning not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

  • PDF

A Study on the Impact Fracture Modeling Techniques of Glass-Ceramic Spherical Dome (글라스 세라믹 구형 돔의 충격파괴 모델링 기법 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Kim, Jae-Hoon;Kong, Jeong-Pyo;Koo, Song-Hoe;Moon, Soon-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.226-231
    • /
    • 2007
  • This paper studied on the impact fracture modeling techniques of spherical dome with MACOR glass-ceramic. The glass ceramic material has bigger compressive strength than the tensile strength and endure well at high temperature. The fracture simulation under shock perssure was performed by the finite element method with nonlinear code LS-Dyna. The simulation was carried out by 3 type dome models under step impact pulse shape. 4-node shell element and 8-node solid element were used for analysis.

  • PDF

Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

  • Kwon, Taek-Ka;Pak, Hyun-Soon;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • PURPOSE. All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS. The mean fracture strengths were as follows: $54.9{\pm}15.6$ N for the Lava CAD/CAM zirconia crowns and $87.0{\pm}16.0$ N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

Analysis of Toughening Mechanism of Ceramic Composites by Acoustic Emission (AE(Acoustic Emission)에 의한 세라믹 복합재료의 고인성화 기구 분석)

  • 장병국
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1129-1138
    • /
    • 1997
  • Al2O3/20 vol%YAG composite containing equiaxed grains and Al2O3/20 vol%LaAl11O18 composite containing elongated grains were fabricated using Al2O3-Y2O3 composition and Al2O3-La2O3 composition, respectively, by hot-pressing. In order to investigate the influence of microstructural control of second phase on toughening effect of toughened ceramic composites, AE (acoustic emission) measurements have been coupled with fracture toughness experiments(SENB and SEPB method). A separation of the fracture toughness and analysis of toughening mechanism was possible using the AE technique. The fracture toughness of hot-pressed materials was estimated to be 3.2 MPam0.5 for monolithic alumina, 4.7 MPam0.5 for Al2O3/20 vol%YAG composite and 6.2 MPam0.5 for Al2O3/20 vol%LaAl11O18 composite. In monolithic Al2O3, toughening does not occur as a result of either microcracking or grain bridging, whereas, composites exhibit toughening effects by both microcracking in the frontal zone and gain bridging in the wake zone, resulting in an improvement of fracture toughness as compared with monolithic Al2O3. The fracture toughness of Al2O3/20 vol%LaAl11O18 composite is higher than that of Al2O3/20 vol%YAG composite. It may be attributed to the elongated microstructure of Al2O3/20 vol%LaAl11O18 composite, resulting relatively greater bridging effect.

  • PDF

FRACTURE STRENGTH OF THE IPS EMPRESS CROWN: THE EFFECT OF OCCLUSAL DEPTH AND AXIAL INCLINATION ON UPPER FIRST MOLAR (IPS Empress 도재관의 파절강도 : 상악 제1대구치에서 교합면 두께와 축면경사도에 따른 영향)

  • Choi Teak-Rim;Lee Hae-Young;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.171-183
    • /
    • 2001
  • The purpose of this study was compare the fracture strength of the IPS Empress ceramic crown according to the occlusal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ},\;8^{\circ},\;12^{\circ}$) of the upper first molar. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and were cemented with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results of this study were as follows: 1. The fracture strength of the ceramic crown with 2.5mm depth and $8^{\circ}$ inclination was the highest (1393N). Crowns of 1.5mm depth and $4^{\circ}$ inclination had the lowest strength (1015N) 2. There were no significant differences of the fracture strength according to occlusal depth and axial inclination. 3. Most fracture lines began at the loading area and extended through proximal surface perpendicular to the margin, irrespective of occlusal depth. 4. There was positive correlation between the fracture strength and the fracture surface area of crowns.

  • PDF

Mechanical Properties of Zirconia Reinforced Glass-Ceramic (지르코니아 강화형 Glass-Ceramic의 기계적 성질)

  • Park, Eun-Eui;Dong, Jin-Keun;Lee, Hae-Hyoung;Song, Ki-Chang;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Fracture resistance of ceramic brackets to arch wire torsional force (토오크 양에 따른 세라믹 브라켓의 파절 저항성)

  • Han, Jung-Heum;Chang, Minn-Hii;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2007
  • The purpose of this study was to estimate the fracture resistance of commercially available ceramic brackets to torsional force exerted from arch wires and to evaluate the characteristics of bracket fracture. Methods: Lingual root torque was applied to maxillary central incisor brackets with 0.022-inch slots by means of a $022\;{\times}\;028-inch$ stainless steel arch wire. A custom designed apparatus that attached to an Instron was used to test seven types of ceramic brackets (n = 15). The torque value and torque angle at fracture were measured. In order to evaluate the characteristics of failure, fracture sites and the failure patterns of brackets were examined with a Scanning Electron Microscope. Results: Crystal structure and manufacturing process of ceramic brackets had a significant effect on fracture resistance. Monocrystalline alumina (Inspire) brackets showed significantly greater resistance to torsional force than polycrystalline alumina brackets except InVu. There was no significant difference in fracture resistance during arch wire torsional force between ceramic brackets with metal slots and those without metal slots (p > 0.05). All Clarity brackets partially fractured only at the incisal slot base and the others broke at various locations. Conclusion: The fracture resistance of all the ceramic brackets during arch wire torsion appears to be adequate for clinical use.