• Title/Summary/Keyword: Ceramic fracture

Search Result 832, Processing Time 0.021 seconds

Microstructure Formation and mechanical Properties of $\alpha$-$\beta$ ($\alpha$-$\beta$ SiAlON의 미세구조 형성과 특성)

  • 최민호;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • The specimens which were prepared from $\alpha$-Si3N4 with additions of YAG(3Y2O3.5Al2O3)-10 wt% and various AlN contents were sintered in N2 atmosphere at 1$700^{\circ}C$ The effect of $\alpha$,$\beta$-solid solution contents and sintering time on mechanical properties were investigated. As the content of $\beta$-solid solution and sintering time increased the hardness is reduced but the hardness of specimen sintered over 10 hours is constant irrespective of sintering time. While the fracture toughness increased with increasing of $\beta$-solid solution and sintering time. The fracture toughness of specimen with 80% $\beta$-solid solution content increased from 3.89 to 6.66 MPam1/2 with sintering sintering up to 20 hours/ But the amount of increased fracture toughness of specimen with below 20% $\beta$-solid solution content is not significant.

  • PDF

Contact Damage and Fracture of Poreclain/Glass-Infiltrated Alumina Layer Structure for Dental Application (치아 응용을 위한 /유리침윤 알루미나 이중 층상구조의 접촉손상 및 파괴)

  • 정연길;여정구;최성설
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1257-1265
    • /
    • 1998
  • Hertzian contact tests were used to investigate the evolution of fracturedamage in the coating layer as functions of contact load and coating thickness by studying crack patterns in porcelain on glass-infiltrated alumina bilayer system conceived to simulate the crown structure of a tooth. Cone cracks initiated at the coating top surface without delamination at interface and crack propagation to substrate. Preferentially the cracks made multi-cracks at the coating top surface rather than proceeding to interface. The cracks were highly stabilized with wide ranges between the loads to initiate first cracking and to cause final failure im-plying damage-tolerant capability. Finite element modelling was used to evaluate the stress distribution. Maximum tensile stress were responsible for the cracking at the coating layer and had a profound influence on the crack pattern and fracture damage in the layered structure materials.

  • PDF

Effect of the Heating Rate on the Microstructure and Fracture Toughness of Silicon Nitride Ceramics (소결시의 승온속도가 질화규소 요업체의 미세조직과 파괴인성에 미치는 영향)

  • 이상훈;이재도;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1227-1232
    • /
    • 1995
  • Effect of heating rate on the microstructure of the silicon nitride ceramics has been investigated. The specimens with composition of 92Si3N4-6Y2O3-2Al2O3 (in wt%) were sintered at 176$0^{\circ}C$ under 127 kPa for 3h in N2 atmosphere at various heating rates from 1 to 10$0^{\circ}C$/min. The grain size of larger than 2${\mu}{\textrm}{m}$ and less than 1${\mu}{\textrm}{m}$ were measured and compared for the specimens. Regardless of heating rate, grain size of all the specimens showed bimodal distributions and the fracture toughness remained in the range of 5.53~5.72 MPa.m1/2. However, the aspect ratio of the grains of diameter above 2${\mu}{\textrm}{m}$ increased with the heating rate while their grain size and volume fraction decreased.

  • PDF

An Effect of Blending Materials on the Strength Characteristics of High Strength Cement Composite (고강도 시멘트 복합체의 강도특성에 미치는 혼합재료의 영향)

  • 최일규;김정환;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.330-336
    • /
    • 1994
  • High strength cement composites (W/C=0.1) were prepared by using various blending materials such as SiC whisker and white carbon (hydrated silica: SiO2·nH2O). The effect of various blending materials on the microstructure and strength of the hardened cement paste were investigated in the view of fracture mechanics. The plain specimen showed 101 MPa of flexural strength, 81 GPa of Young's modulus and 1.32 MPam1/2 of fracture toughness. When the blending materials were added to the composites, their values were enhanced to about 110∼138 MPa, 95∼146 GPa and 1.32∼1.87MPam1/2 respectively. The improvement of the mechanical strength for the hardened cement paste may be due to the removal of macropores, the reduction of total porosity, pozzolanic reaction and the increase of various fracture toughening effect.

  • PDF

Control of Microstructures and Properties of Composites of the Al2O3/ZrO2-ZrO2-Spinel System: I. Preparation and Sintering Behavior of Al2O3-ZrO2 Composite Powders (Al2O3/ZrO2-Spinel계 복합체의 미세구조 및 물성제어: I. Al2O3-ZrO2 복합분체의 제조 및 소결특성)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.797-805
    • /
    • 1992
  • Al2O3-20 wt% ZrO2 composite powders to be used as the starting materials of the Al2O3/ZrO2-Spinel composite system were prepared by the use of the emulsion-hot kerosene drying method. The crystalline phase of ZrO2 in the synthesized Al2O3-ZrO2 composite powders was 100% tetragonal but the small amount of t-ZrO2 was transformed into m-ZrO2 after crushing. The hardness, fracture toughness, and flexural strength of the composite, which was sintered at 1650$^{\circ}C$ for 4 hrs after calcining at 1100$^{\circ}C$ for 2 hrs and had the relative density of 99%, were 15.7 GPa, 4.97 MN/m3/2, and 390 MPa, respectively. The fracture form in the sintered composites was found to be the intergranular fracture.

  • PDF

Preparation of Ceria-stabilized Zirconia Ceramics with Irregular Grain Shape (불규칙 입자형상을 갖는 세리아 안정화 지르코니아 세라믹스의 제조)

  • 강현희;이종국
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.372-379
    • /
    • 1999
  • Hihg-toughened ceria-stabilized tetragonal zirconia ceramics with irregular grain shape and undulated grain boundary was prepared by ceria doping. Irregularity of grain shapes was increased with the amount of doped ceria. But in case of the large amount of doped ceria grain boundary was migrated to the reverse direction of DIGM. Ceria-stabilized zirconia ceramics annealed at 1650$^{\circ}C$ for 2h after twice dippings into cerium nitrate solu-tion of 0.2M and sintering at 1500$^{\circ}C$ for 2h showed the highest grain boundary length with a value of 23.6$\mu\textrm{m}$ Ceria concentration difference between convex and concave sides in irregular grains was observed over 1 mol% but not observed in normal grains, Specimens with normal grain shape showed intergranular fracture mode whereas the specimens with irregular grain shape showed transgranular fracture mode.

  • PDF

Microstructural Characterization of MDF Cement-SiC Whisker Composites (MDF 시멘트-SiC 위스커 복합재료의 미세구조적 특성)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.617-622
    • /
    • 1992
  • In order to study on the effect of SiC whisker in flexural strength characterization of macro defect-free (MDF) cement composites, which composed of high alumina cement and polyvinyl alcohol, microstructural characterization of the composite specimens fabricated by the addition of SiC whiskers was investigated. Microproes are created around the SiC whisker, MDF cement didn't react with the SiC whisker. However, flexural strength of the composites have been improved. Fracture morphology of the composites, presents mainly intergranular type fracture passing around the unhydrated particles and siC whiskers, and partially transgranular type fracture. The main strengthening mechanisms of the MDF cement composites reinforced with SiC whiskers are characterized by crack deflection, microcracking, and bridging of cracks.

  • PDF

EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH OF RESIN CEMENTS TO REINFORCED ALL-CERAMIC CROWNS (불산 처리 시간이 강화형 전부도재관과 레진 시멘트의 전단 결합강도에 미치는 영향)

  • Kim Kyoung-Il;Choi Keun-Bae;Ahn Seung-Geun;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.501-513
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the effects of etching time on shear bond strength of four resin cements to IPS Empress 2 ceramic. Material and Methods: Forty rectangular shape ceramic specimens ($10{\times}15{\times}3.5mm$ size) were used for this study. The ceramic specimens divided into four groups and were etched with 10% hydrofluoric acid for 0, 10, 30, 60, 180, 300, 420, 600, and 900 seconds respectively. Etched surfaces of ceramic specimens were coated with ceramic adhesive system and bonded with four resin cement (Variolink II, Panavia F, Panavia 21, Super-Bond C&B) using acrylic glass tube. All cemented specimens were tested under shear loading untill fracture on universal testing machine at a crosshead speed 1mm/min: the maximum load at fracture (kg) was recored. Shear bond strengh data were analyzed with oneway analysis of variance and Tukey HSD tests (p<.05). Etched ceramic surfaces (0-, 60-, 300-, and 600-seconds etching period) and fracture surfaces after shear testing were examined mophologically using scanning electron microscopy. Results : Ceramic surface treatment with 10% hydrofluoric acid improved the bond strength of three resin cement except for Super-Bond C&B cement. Variolink II (41.0$\pm$2.4 MPa) resin cement at 300-seconds etching time showed statistically higher shear bond strength than the other resin cements (Panavia F: 28.3$\pm$2.3 MPa, Panavia 21: 21.5$\pm$2.2 MPa, Super-Bond C&B: 16.7$\pm$1.6 MPa). Ceramic surface etched with 10% hydrofluoric acid for 300 seconds showed more retentive surface texture. Conclusion: Within the limitation of this study, Variolink II resin cement are suitable for cementation of Empress 2 all-ceramic restorations and etching with 10% hydrofluoric acid for 180 to 300 seconds is required to enhance the bond strength.

Effect of Interlayer Thickness on Mechanical Properties of Nicalon-Fiber-Reinfored SiC Composites (Nicalon 섬유강화 SiC 복합재료에서 섬유 Coating층의 두께가 기계적 성질에 미치는 영향)

  • 김민수;김영욱;이준근;정덕수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.549-556
    • /
    • 1993
  • Interfacial shear strength plays an important role in determining the mechanical properties of a fiber-reinforced ceramic composites. In this study, the effect ofinterlayer thickness on mechanical properties of Nicalon-fiber-reinforced SiC composites fabricated via polymer solution infiltration/chemical vapor infiltration (PSI/CVI) was studied. It was found that the flexural strength and fracture toughness of the composites were increased with the interlayer thickness and showed maximum value at the interlayer thickness of 0.66${\mu}{\textrm}{m}$. Typical flexural strength and fracture toughness of Nicalon-fiber-reinforced SiC composites with interlayer thickness of 0.66${\mu}{\textrm}{m}$ were 391.7$\pm$34.6MPa and 15.1$\pm$1.8MPa.m1/2, respectively.

  • PDF

Mechanical Properties and Cutting Performance of Ti(CN) Based Carbonitride Ceramics (Ti(CN)기 탄화물질 세라믹스의 기계적 특성과 절삭성능)

  • Park, Dong-Su;Lee, Yang-Du;Jeong, Tae-Ju;Gang, Sin-Hu
    • 연구논문집
    • /
    • s.28
    • /
    • pp.193-207
    • /
    • 1998
  • Fully dense THCN) based carbonitride ceramics were fabricated by pressureless sintering. During sintering, solid solutions were formed from the ceramic ingredients. The ceramics exhibited microvickers hardness of 1560-2050kgf/mm2, fracture toughness of 3.0-5.4 MPa $m^(1/2)$, and three point flexural strength of 645-1072 MPa. Some of the ceramics were shaped in a cutting tool, and the cutting performance was evaluated. In case of cutting SCM440 alloy steel, the ceramics showed better performance than the commercially available alumina-titanium carbide ceramic cutting tool. Considering the excellent productivity of pressureless sintering compared with other densification methods and their cutting performance, this new class of ceramics are very promising for wear resistant applications.

  • PDF