• Title/Summary/Keyword: Ceramic fracture

Search Result 832, Processing Time 0.022 seconds

Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

  • Choi, Sulki;Yoon, Hyung-In;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.423-431
    • /
    • 2017
  • PURPOSE. The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS. Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS. The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION. The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness.

COMPARATIVE STUDY OF FRACTURE STRENGTH DEFENDING ON THE THICKNESS OF SOME ALL CERAMIC CORES (수종의 전부도재관 코어의 두께에 따른 파절강도의 비교 연구)

  • Kim Doo-Yong;Lee Young-Soo;Park Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • Statement of problem : The increased awareness of esthetics in dentistry has brought the esthetic consideration in prosthetic restorations . Dental ceramics offer better esthetics for use of prosthetic restorations. Unfortunately, dental ceramic materials are not always the most suitable candidate materials since their inherently brittle nature. In recent years, basic research in ceramic science has led to the recognition or several approaches to strengthen and to enhance esthetics of ceramics. Several all ceramic systems use ceramic core and porcelain build up structures . Ceramic cores influence to strength of all ceramic crowns . So the strength of ceramic cores is important to all ceramic crowns. Purpose : The purpose of this study is to estimate the flexural strength of ceramic cores in some all ceramic systems. Material and method : A biaxial flexure test was conducted on three groups(Cergo, Empress 2, In-Ceram). Each group consisted of 30 discs of nearly identical dimension with a 0.5mm, 1.0mm, 1.5mm thickness and 12mm in diameter. The fracture load was recorded by Instron. Analysis of valiance(ANOVA) and Tukey's tests were performed using SAS statistical software. Results : 1.5mm thickness of specimens were significantly stronger than 0.5mm and 1.0mm thickness of specimens in Cergo and In-Ceram. But each sepecimen group of Empress 2 was no significantly strength by thickness. In order of In-Ceram, Empress 2 and Cergo has significantly stronger strength in the same thickness. Conclusion : In-Ceram is the strongest ceramic material in 3 materials. All the materials can be used according to the required characters.

The Assessment of Ceramic Wear by the Parameter Scf (Scf 파라메타에 의한 세라믹 마멸 평가)

  • 김상우;김석삼
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 1996
  • The result of wear test for ceramic materials was assessed by Scf parameter to verify the usefulness of the proposed Scf parameter. Friction and wear tests were carried out with ball on disk type. The materials used in this study were HIPed Alumina $(Al_2O_3)$, Silicon carbide (sic), Silicon nitride $(Si_3N_4)$ and Zirconia $(ZrO_2)$. The tests were carried out at room temperature with self mated couples of ceramic materials under lubricated condition. Turbine oil was used as a lubricant. In this test, increasing the load, specific wear rates and wear coefficients of four kinds of ceramic materials had a tendency to increase. The wear coefficients of ceramic materials were in order of $Al_2O_3, SiC, Si_3N_4, ZrO_2$. Worn surfaces investigated by SEM had residual surface cracks and wear particles caused by brittle fracture. As the fracture toughness of ceramic materials was higher, wear resistance more increased. The roughness of worn surface had correlation with wear rate. The wear rate(W$_{s}$) and Scf parameter showed linear relationship in log-log coordinates and the wear equation was given as $W_s = 5.52 $\times$ Scf^{5.01}$.

Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (혼합재 치환율에 따른 경량소재의 물리적 특성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.633-638
    • /
    • 2009
  • Lightweight materials were fabricated using glass abrasive sludge, bottom ash and slag powder in this study. This study tried to draw the correlation between physical properties and internal pore of lightweight material. The content of bottom ash and slag powder was from 10% to 50% and firing temperature from $760{^{\circ}C}\;to\;800{^{\circ}C}$ in rotary kiln. The lightweight material containing bottom ash or slag powder had a specific gravity of $0.21{\sim}0.70$ at particle size $2{\sim}4$ mm. Replacement ratio of the admixture increasing with specific gravity increased. Fracture strength of panel made with various lightweight materials was $32{\sim}55\;kgf/cm^2$ and flexural strength was $11{\sim}18\;kgf/cm^2$. Fracture strength increased by 72% and flexural strength was 63% compared with reference. Thermal conductivities of panel was $0.07{\sim}0.11W/m{\cdot}k$. The water absorption ratios of panel with lightweight materials containing bottom ash were $1.8{\sim}2.8$% and slag powder were $2.65{\sim}2.8$%. Excellent results on resistant of water absorption.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

Effect on Mechanical Properties of 3Y-TZP; (II) Addition of Alumina (3Y-TZP의 기계적 물성에 미치는 영향: (II) 알루미나의 첨가)

  • Yang, Seong-Koo;Bae, Kyung-Man;Cho, Bum-Rae;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.417-424
    • /
    • 2005
  • Although a lot of studies in fracture toughness of Y-TZP ceramics for structural applications have been done, it remains an important challenge to be able to improve fracture toughness of Y-TZP ceramics. In this research, milling method adding monoclinic zirconia and $Al_2O_3$ to 3Y-TZP was introduced to improve the fracture toughness of 3Y-TZP. Experimental results showed that addition of small amount of $Al_2O_3$ causes to make lots of oxygen vacancies (VO) by substituting $Al^{3+}$ for $Zr^{4+}$. It is believed that the produced vacancies provides useful routes far mass transfer. Y-TZP ceramics having higher microhardness and better fracture toughness was fabricated by sintering at $1400^{\circ}C$.

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(I) : Effect of CeO2 Content on the Mechanical Properties and Fracture Behavior of Ce-TZP (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(I) : CeO2 함량에 따른 Ce-TZP의 기계적 성질과 파괴거동의 변화)

  • 김문일;박정현;강대석;문성환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.719-727
    • /
    • 1989
  • By using commercial zirconia powder CeO2-ZrO2 ceramics containing 8~16mol% CeO2 was made by heat treatment at 1350~155$0^{\circ}C$ for 1~10hr. The minimum amount of CeO2 for obtaining complete tetragonal phase was 12mol%, and in the tetragonal phase region fracture toughness of Ce-TZP was decreased with increasing CeO2 content and the maximum value was obtained when 12mol% CeO2 was added. The bending strength goes through maximum at 14mol% CeO2. Fracture mode of Ce-TZP transformed from intergranular to transgranular fracture with increasing CeO2 content, so the morphology of fracture surface of 16mol% Ce-TZP was wholly transgranular and this tendency was independent on grain size. The crystal structure of the 12mol% Ce-TZP was monoclinic with fringes along the grain boundaries which are lying in the particular plane from the TEM observation. The chemical composition of the sintered body was homogeneous as a whole and some amorphism or air pocket was observed at the triple junction.

  • PDF

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Effect of Al Amount on the Sintering Behavior and Mechanical Properties of Reaction Bonded Alumina (반응 소결 Alumina의 소결거동과 기계적 성질에 미치는 Al 첨가량의 영향)

  • 장복기;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.519-527
    • /
    • 1997
  • The effect of Al content and heating rate on the sintering behavior, microstructure, and mechanical properties of reaction bonded alumina (RBAO) was investigated. As the heating rate became slower a critical Al content which could be added to RBAO increased. The weight gain and linear shrinkage of RBAO containing of 55 vol% Al were 28% and 6.5%, respectively. The relative density of RBAO decreased from 96 to 94%, as the amount of Al increased from 15 to 55 vol%. The hardness of RBAO increased from 17.8 to 19.9 GPa and the bending strength enhanced from 370 to 570 MPa, as the amount of Al increased from 15 to 55 vol%. On the other hand, the wear rate of RBAO degraded from 6.7 to 3.39$\times$10-5 $\textrm{mm}^2$/kg and the fracture toughness decreased from 4.1 to 3.6 MPa.m1/2, as the amount of Al increased from 15 to 55 vol%. Fracture modes were shown to the mixed mode of inter/transgranular. However, transgranular fracture was dominant with increasing the content of Al.

  • PDF

Microstructure and Mechanical Properties of SiC-BN Composites with Oxynitride Glass

  • Lee, Young-Il;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.229-233
    • /
    • 2003
  • By using an oxynitride glass as a sintering additive, the effects of BN content on microstructure and mechanical properties of the hot-pressed and subsequently annealed SiC-BN composites were investigated. The microstructures developed were analyzed by image analysis. The morphology of SiC grains was strongly dependent on BN content in the starting composition. The aspect ratio of SiC decreases with increasing BN content and the average diameter of SiC shows a maximum at 5 wt% BN and decreases with increasing BN content in the starting powder. The fracture toughness increased with increasing BN content while the strength decreased with increasing BN content. The strength and fracture toughness of SiC or SiC-TiC composites were strongly dependent on the morphology of SiC grains, but the strength and fracture toughness of SiC-BN composites were strongly dependent on BN content rather than morphology of SiC grains. These results suggest that fracture toughness of SiC ceramics can be tailored by manipulating BN content in the starting composition. Typical fracture toughness and strength of SiC-10 wt% BN composites were 8 MPa$.$m$\^$1/2/ and 445 MPa, respectively.