• Title/Summary/Keyword: Ceramic armor material

Search Result 5, Processing Time 0.017 seconds

Personal Ceramic Armor Materials to Protect the Human lives in the Warfare (생명을 보호히는 개인용 세라믹 방탄보호재료)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.50-53
    • /
    • 2009
  • This paper mainly describes the armor materials, especially the ceramic materials for the personal protection. In the ceramic armor materials, B4C ceramics and SiC ceramics are the most popular materials. The $B_4C$ ceramics which consists of 4 atoms of boron and I atom of carbon is very light and strong. It is usually used to personal protection armor and chair protection in the helicopter. This material must be sintered at very high temperature because it melts at $2400^{\circ}C$. In order to have a good armor property, it must have very high density which is achieved by hot press or subsidiary sintering aid methods such as reducing the particle size of raw materials or mixing the sintering agents to the raw materials.

Study on Bullet-Proof Performance of Multi-Layered Hybrid Armor Against 9mm FMJ Projectile (9mm 권총탄 위협을 받는 적층구조의 방탄성능 연구)

  • Lee, Jong-Gu;Kim, Siho;Kim, Gunin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.487-495
    • /
    • 2012
  • In order to prevent the high velocity bullet from penetration, aluminum alloy and RHA(Rolled Homogeneous Armour) steel, which have a high tensile and compressive strength, are usually used as the bullet-proof armor material. Although these materials have a good bullet proof performance, but not an area density which is a weight increasing factor of bullet-proof armor. Therefore, Mg(magnesium) alloy is a promising substitute for the traditional bullet-proof armor material due to the relatively low areal density. The spatial efficiency of Mg alloy, however, is inferior to the traditional material's, which is a volume(thickness) increasing factor of bullet-proof armor. In this study, we select the multi-layered hybrid armor which consist of Ceramic, with a high strength; Mg alloy, with a low areal density; Kevlar, with a high tensile strength-to-weight ratio; in order to make up for the poor spatial efficiency of Mg alloy. By predicting V50 of the multi-layered armor against 9mm FMJ(Full Metal Jarket). we show that the multi-layered armor have the capability in improving bullet-proof performance in the respect of the areal density, but also the spatial efficiency.

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.

Synthesis of Alumina-Silica ceramic armor materials(I) (알루미나-실리카계 세라믹복합체 방탄재료 연구(I))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.40-47
    • /
    • 2005
  • In this study, we tried to invent ceramic armor material with brilliant ballistic properties by the silica of the high compression-expansion ratio and based on alumina that has the most economical and higher ballistic efficiency. After we choose three compositions, proper sintering temperature for each composition was decided. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles. As a result, $46\%\;Al_2O_3\;-\;51\%\;SiO_2$ of three compositions had the highest ballistic efficiency md better properties than alumina.