• Title/Summary/Keyword: Ceramic Waste

Search Result 249, Processing Time 0.035 seconds

N3S-ligated Copper(II) Complex Catalyzed Selective Oxidation of Benzylic Alcohols to Aldehydes under Mild Reaction Conditions

  • Dharmalingam, Sivanesan;Koo, Eunhae;Yoon, Sungho;Park, Gyoosoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.715-720
    • /
    • 2014
  • A Cu(II) complex with an three nitrogens and one sulfur coordination environment was synthesized and characterized. Its redox potential was observed at 0.483 V vs. NHE, very similar to that of a Cu-containing fungal enzyme, galactose oxidase, which catalyzes the oxidation of alcohols to corresponding aldehydes with the concomitant reduction of molecular oxygen to water. The Cu(II) complex selectively oxidizes the benzylic alcohols using TEMPO/$O_2$ under mild reaction conditions to corresponding aldehydes without forming any over-oxidation product. Moreover, the catalyst can be recovered and reused multiple times for further oxidation reactions, thus minimizing the waste generation.

Development of Parallel TBR system for the treatment of Trichloroethylene by Burkholderia cepacia G4

  • Lee, Eun-Yeol;Ye, Byeong-Dae;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.512-515
    • /
    • 2000
  • A parallel reactor system which is consisted of two trickle bed reactors (TBR) was developed for the biodegradation of trichloroethylene (TCE) in waste gas stream. The reactor were packed with porous ceramic materials and Burkholderia cepacia G4 was inoculated to form biofilms. Each reactor was operated alternatively in TCE degradation or reactivation mode, and the effect of switching time on TBR performance was investigated. The MO (monooxygenase) activity during the TCE transformation decreased below 10 % within 24 hr, but could be recovered to the initial high level within 10 hr after supplying the reactivation medium supplemented with phenol as a carbon source. This shows that the parallel TBR system has a great potential for the long-term stable treatment of TCE.

  • PDF

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

Fabrication of Silicon Nitride Ceramics Using Semiconductor-Waste-Si Sludge (반도체 폐 Si 슬러지를 이용한 질화규소세라믹의 제조)

  • Lee, Byong-Taek;Yoo, Jung-Ho;Kim, Hai-Doo
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1170-1175
    • /
    • 1999
  • The microstructures and mechanical properties of $Si_3N_4$ ceramics produced by nitridation and post-sintering using semiconductor-waste-Si sludge were investigated. Lots of microcracks were observed in the waste-Si powders which contained some amounts of amorphous $SiO_2$. The nitridation rate of waste-Si compacts showed lower value than that of commercial Si powder compacts. The nitridation rate was increased with increasing nitridation temperature and then the percent of nitridation at 1470$^{\circ}C$ showed 98%. The phases of $Si_3N_4$ in the reaction-bonded bodies were mixed with ${\alpha}$ and ${\beta}$-type, and small amounts of $Si_2N_2O$ phase while those after post-sintering were ${\beta}$-$Si_3N_4$ and ${\alpha}$-Sialon. The sample post-sintered at 1950$^{\circ}C$ showed the fracture toughness of 5.6 $^MPa{\cdot}m^{1/2}$ and the fracture strength of 497 MPa which were lower than those of sintered body using commercial Si powder possibly due to the formation of ${\alpha}$-Sialon phase.

  • PDF

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Studies on the Physico-chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste (${\cdot}$저준위 방사성폐기물 유리고화체의 물리${\cdot}$화학적 특성 연구)

  • Kim, Cheon-Woo;Park, Byoung-Chul;Kim, Hyang-Mi;Kim, Tae-Wook;Choi, Kwan-Sik;Park, Jong-Kil;Shin, Sang-Woon;Song, Myung-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.839-845
    • /
    • 2001
  • In order to vitrify the Ion-Exchange Resin(IER), Dry Active Waste(DAW), and borate concentrate generated from the commercial nuclear facilities, the glass formulation study based on the their compositions was performed. Two glasses named as RG-1 and DG-1 were formulated as the candidate glasses for the vitrification of hte IER and DAW, respectively. A glass named as MG-1 was also formulated as a candidate glass for the vitrification of the mixed wastes containing the IER, DAW, and borate concentrate. The process parameters, product qualities, and economics were evaluated for the candidate glasses and confirmed experimentally for the some properties. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. the product qualities such as glass density, chemical durability, phase stability, etc. were satisfactory. In case of vitrifying the wastes using our developed glass formulation study, the volume reduction factors for the IER, DAW and mixed wastes were evaluated as 21, 89 and 75, respectively.

  • PDF

${SO_4}^{2-}$ ion Removal from Solution by Crystal Precipitation on Surface Active Glasses (표면활성유리에의 결정석출을 이용한 용액중 황산염 이온 제거)

  • 남명식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1286-1293
    • /
    • 1998
  • ${SO_4}^{2-}$ ions present in industrial waste water if combined with other metal ions in the water can cause serious scale problem in a transporting pipe. In this study therefore ${SO_4}^{2-}$ ions in an acidic solution have been removed by using surface active glasses. Glasses with various compositions of $SiO_2-Na_2O-B_2O_3-RO$ (R=Mg, Ca, Sr, Ba) system were reacted in a ${SO_4}^{2-}$ ion-containing solution with various pHs ranging from 1 to 4 for various time the reacted glass surfaces were analyzed by XRD and SEM and all ions in the reacted solution were also measured ${SO_4}^{2-}$ ions in the solution were combined with divalent ions leached out of glass and precipitated on the glass surface as sulfate crystals. In this was the surface ion could be removed from the acidic solution. The sulfate ion removal capacity is closely related to the solubility product con-stants of the newly formed sulfate crystals. Almost no sulfate crystal was formed on the MgO-containing glass while sulfate crystals were easily formed on the glass containing either SrO or BaO This indicates that those glasses have strong removal efficiency of ${SO_4}^{2-}$ ions from the solution.

  • PDF

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.