• Title/Summary/Keyword: Ceramic, Zirconia

Search Result 628, Processing Time 0.02 seconds

Polish of interface areas between zirconia, silicate-ceramic, and composite with diamond-containing systems

  • Pott, Philipp-Cornelius;Hoffmann, Johannes Philipp;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.315-320
    • /
    • 2018
  • PURPOSE. Fractures, occlusal adjustments, or marginal corrections after removing excess composite cements result in rough surfaces of all-ceramic FPDs. These have to be polished to prevent damage of the surrounding tissues. The aim of this study was to evaluate the roughness of zirconia, silicate-ceramic, and composite after polish with different systems for intraoral use. MATERIALS AND METHODS. Each set of 50 plates was made of zirconia, silicate-ceramic, and composite. All plates were ground automatically and were divided into 15 groups according to the treatment. Groups Zgrit, Sgrit, and Cgrit received no further treatment. Groups Zlab and Slab received glaze-baking, and group Clab was polished with a polishing device. In the experimental groups Zv, Sv, Cv, Zk, Sk, Ck, Zb, Sb, and Cb, the specimens were polished with ceramic-polishing systems "v", "k", and "b" for intraoral use. Roughness was measured using profilometry. Statistical analysis was performed with ANOVA and $Scheff{\acute{e}}$-procedure with the level of significance set at P=.05. RESULTS. All systems reduced the roughness of zirconia, but the differences from the controls Zgrit and Zlab were not statistically significant (P>.907). Roughness of silicate ceramic was reduced only in group Sv, but it did not differ significantly from both controls (P>.580). Groups Cv, Ck, and Cb had a significantly rougher surface than that of group Clab (P<.003). CONCLUSION. Ceramic materials can be polished with the tested systems. Polishing of interface areas between ceramic and composite material should be performed with polishing systems for zirconia first, followed by systems for veneering materials and for composite materials.

Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown

  • Ji, Min-Kyung;Park, Ji-Hee;Park, Sang-Won;Yun, Kwi-Dug;Oh, Gye-Jeong;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • PURPOSE. This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. MATERIALS AND METHODS. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau$^{(R)}$Zirconia and ZENOSTAR$^{(R)}$ZR translucent) and lithium disilicate glass ceramic (IPS e.max$^{(R)}$press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. RESULTS. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). CONCLUSION. The lithium disilicate glass ceramic crown (IPS e.max$^{(R)}$press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR$^{(R)}$ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) had overextended margins.

Phase Transition and Thermal Expansion Behavior of Zirconia Setter Fabricated from Fused CaO Stabilized Zirconia

  • Park, Ji-Hoon;Bang, Il-Hwan;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.184-190
    • /
    • 2019
  • To improve resistance in thermal shock of zirconia setter which is frequently and repeatedly exposed to high temperature, high degree of porosity and control of thermal expansion are needed for which the fused CSZ (CaO stabilized zirconia) is used to produce the zirconia setter. In the present study, the effects of sintering temperature, cool down condition, addition of CaO stabilizer, and addition of other additives on phase transition and thermal expansion behavior of the fabrication process of zirconia setter, were examined. The zirconia setter, fabricated with fused CSZ at 1550℃, exhibited 20.4 MPa of flexural strength, 6.8% of absorbance, and 27.9% of apparent porosity. The rapid change in thermal expansion of zirconia setter is observed at temperature around 800℃, and it was reduced by low firing temperature, slowed cooled down, and addition of CaO.

Marginal fit of anterior 3-unit fixed partial zirconia restorations using different CAD/CAM systems

  • Song, Tae-Jin;Kwon, Taek-Ka;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.219-225
    • /
    • 2013
  • PURPOSE. Few studies have investigated the marginal accuracy of 3-unit zirconia fixed partial dentures (FPDs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM) system. The purpose of this study was to compare the marginal fit of zirconia FPDs made using two CAD/CAM systems with that of metal-ceramic FPDs. MATERIALS AND METHODS. Artificial resin maxillary central and lateral incisors were prepared for 3-unit FPDs and fixed in yellow stone. This model was duplicated to epoxy resin die. On the resin die, 15 three-unit FPDs were fabricated per group (45 in total): Group A, zirconia 3-unit FPDs made with the Everest system; Group B, zirconia 3-unit FPDs made with the Lava system; and Group C, metal-ceramic 3-unit FPDs. They were cemented to resin dies with resin cement. After removal of pontic, each retainer was separated and observed under a microscope (Presize 440C). Marginal gaps of experimental groups were analyzed using one-way ANOVA and Duncan test. RESULTS. Mean marginal gaps of 3-unit FPDs were $60.46{\mu}m$ for the Everest group, $78.71{\mu}m$ for the Lava group, and $81.32{\mu}m$ for the metal-ceramic group. The Everest group demonstrated significantly smaller marginal gap than the Lava and the metal-ceramic groups (P<.05). The marginal gap did not significantly differ between the Lava and the metal-ceramic groups (P>.05). CONCLUSION. The marginal gaps of anterior 3-unit zirconia FPD differed according to CAD/CAM systems, but still fell within clinically acceptable ranges compared with conventional metal-ceramic restoration.

Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

  • Lee, Ji-Yeon;Ahn, Jaechan;An, Sang In;Park, Jeong-won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2018
  • Objectives: The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods: Fifty zirconia blocks ($15{\times}15{\times}10mm$, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with $50{\mu}m$ $Al_2O_3$ for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at $37^{\circ}C$ storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results: Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions: Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

  • Kwon, Taek-Ka;Pak, Hyun-Soon;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • PURPOSE. All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS. The mean fracture strengths were as follows: $54.9{\pm}15.6$ N for the Lava CAD/CAM zirconia crowns and $87.0{\pm}16.0$ N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

Effects of coloring procedures on zirconia/veneer ceramics bond strength

  • Tuncel, Ilkin;Ozat, Pelin;Eroglu, Erdal
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 2014
  • PURPOSE. The most common failure seen in restorations with a zirconia core is total or layered delamination of the ceramic veneer. In the present study, the shear bond strengths between veneering ceramics and colored zirconia oxide core materials were evaluated. MATERIALS AND METHODS. Zirconia discs ($15{\times}12{\times}1.6mm$) were divided into 11 groups of 12 discs each. Groups were colored according to the Vita Classic scale: A3, B1, C4, D2, and D4. Each group was treated with the recommended shading time for 3 s, or with prolonged shading for 60 s, except for the control group. Samples were veneered with 3 mm thick and 3.5 mm in diameter translucent ceramic and subjected to shear test in a universal testing machine with a crosshead speed of 1 mm/min. One-way analysis of variance (ANOVA) and Tukey's HSD tests were used for comparisons of the groups having the same shading times. A paired t-test was used for groups of the same color (3 s/60 s). RESULTS. Among the 11 groups investigated C4 (3 s) had the highest bond strength with a value of 36.40 MPa, while A3 (3 s) showed the lowest bond strength with a value of 29.47 MPa. CONCLUSION. Coloring procedures can affect zirconia/ceramic bond strength. However, the results also showed that bond strengths of all the investigated groups were clinically acceptable.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

Optimization of Surface Treatment for Bonding S trength between Zirconia and Veneering Porcelain

  • Won, H.Y.;Kim, H.S.L.;Yun, C.H.;Son, M.K.;Cho, H.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.332-332
    • /
    • 2012
  • All-ceramic prostheses are widely used to fulfill the high esthetic demand. However, bonding failure between zirconia and porcelain is one of the all-ceramic prostheses failures. In order to improve clinical sucess of all-ceramic prostheses, laboratory or in-office surface conditioning techniques on zirconia have been studied.

  • PDF

Synthesis of Mullite-Zirconia Composites from Kaolin by Gel Coating (Gel Coating법에 의한 Kaolin으로부터 Mullite-Zirconia 복합체의 합성)

  • 김세훈;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.497-504
    • /
    • 2000
  • In this study, mullite-zirconia comosite was fabricated by adding ZrOCl2.8H2O using of boehmite gel coating to Hadong kaolin (pink A grade) in order to enhance strength of the mullite specimens. The influence of ZrOCl2.8H2O content and fireing temperature on the crystall phase, microstructure, bulk density, strength of the specimens was investigated. Mullite-zirconia composite was produced in the process of coating zirconia to mullite powder synthesized thereafter and mixing simultaneously of starting materials with boehmite-zirconia gel. Maximum strength with in this study was 251 sintered at 1$600^{\circ}C$ for 2h. Bulk density and strength of the composite with zirconia coated mullite was higher than simultaneous on mixture of starting materials.

  • PDF