• 제목/요약/키워드: Centrifugal turbo blower

검색결과 17건 처리시간 0.023초

가변속 터보냉동기의 기동특성에 관한 연구 (A Study on the Starting Characteristic of Variable Speed Centrifugal Chiller)

  • 김희선;윤홍민;나승호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.512-513
    • /
    • 2012
  • The electric motor is essential to drive turbo machinery. In order to overcome the speed limitations of general motors, the inverter is used to perform high speed to tens of rpm. The high speed drives are widely used in many applications such as turbo blower, turbo centrifugal compressors, and pump using air bearing technique. Starting of high speed motor can cause step out, stall, oscillation of motor because the phase inductance is much smaller than that of ordinary motor. This paper studied on the starting characteristic of variable speed centrifugal chiller considering high speed motor characteristics. Finally, the superiority of the inverter is verified by experimental results.

  • PDF

80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발 (Development of air supply system(Turbo blower) for 80kW PEM fuel cell)

  • 이희섭;김창호;이용복
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

CFD를 이용한 소형 2단 터보블로워의 공력해석 (Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD)

  • 서승재;류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제42권4호
    • /
    • pp.326-335
    • /
    • 2014
  • 터보블로워는 상대적으로 적은 체적유량에서 높은 압력이 요구되는 곳에 사용되는 대표적인 유체기계로서 다양한 산업에 응용되어 사용된다. 본 연구에서는 고속으로 회전하는 소형 2단 터보블로워의 정압상승 메커니즘을 이해하기위해, 1단 임펠러 영역과 터보블로워 전체 영역에 대해서 상용툴인 ANSYS 14.5를 이용하여 CFD해석을 수행하였다. CFD 해석과정에는 역압력 구배에 의한 유동박리 예측에 적합한 k-${\omega}$ SST 난류 모델을 적용하였다. 터보블로워의 전산해석 결과는 KS B 6311 및 KS A 0612에 따른 성능시험방법을 통하여 해석기법이 타당함을 검증하였다. CFD 해석결과 터보블로워의 압력상승은 선형적으로 나타나지 않으며, 안내깃에서의 손실과 케이싱과 임펠러 간극에서 손실이 발생하는 것으로 분석되었다. 소형 2단 터보블로워를 공력성능을 예측하기 위해서는 전체 유동영역에 대한 전산 해석이 필요하며, 실험과 전산해석의 오차에 대해 고려된 전산해석 결과가 선정되어야 한다.

연료전지 차량용 공기 블로워의 공력 설계 (Aerodynamic Design of Cathode Air Blower for Fuel Cell Electric Vehicle)

  • 김우준;박창호;지용준;조경석;김영대;박세영;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.197-200
    • /
    • 2007
  • FCEV uses electric energy generated from fuel cell stack, thus all consisting parts must be re-designed to be suitable for electricity based system. Cathode air blower which supplies compressed air into fuel cell stack has similar shape of turbocharger, but a radial turbine of traditional turbocharger is removed and high speed BLDC motor is installed . Generally, maximum 10% of electric power of fuel cell stack is consumed in air blower, therefore an effective design of air blower can improve the performance of FCEV directly. This study will present an aerodynamic design process of an air blower and compare computational results with experimental data.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for Fuel Cell Electric Bus)

  • 김우준;박창호;조경석;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for FCEV Bus)

  • 박창호;조경석;김우준;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

스크롤 케이싱이 없는 터보팬에 관한 연구 (Study on flows by turbofan without scroll casing)

  • 김재원;박진원;오정수;안은영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.590-595
    • /
    • 2004
  • Turbo fan as an air moving device is widely used for its silent characteristics and high efficiency relative to the other centrifugal multi blade impeller. In general, turbo fan is installed with a scroll casing for energy conversion from kinetic one to pressure energy. However, a turbo fan without scroll casing is considered as a present model that is proposed model for compact design of a product In detail, the model has only 4 cutoffs as guiders for 4 separated outlets. Specially, equal distribution of flow rate generated by the model blower is main interest in this investigation. The optimal position of the guider is found by reducing abnormal flows such as reverse flow in each outlet.

  • PDF