• Title/Summary/Keyword: Centrifugal force analysis

Search Result 193, Processing Time 0.024 seconds

A Study on Production and Physical Properties of Prestressed Concrete Piles(I)-Effect of Factors on the Centrifugal Compaction of Concrte Piles (프리스트레스트 콘크리트 파일의 제조와 물성에 관한 연구(I) -콘크리트 파일의 원심 성형에 미치는 각 요인의 영향)

  • Jaung, Jae-Dong;Kim, Won-Ki;Jeong, Yong;Kim, Jin-Chul;Yoo, Taec-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.228-233
    • /
    • 1992
  • The objective of this report is to investigate the effect of factors on the centrifugal compaction of concrete piles with design of experiments. The analysis of sludge and measurement of compressive strength of specimens compacted by centrifugal of vibration were performed. As a result, there were some effective factors like unit content of cement, high and middle centrifugal force and time. It was considered that the process of centrifugal compaction of concrete piles could be optimized with these results.

  • PDF

Design Program of Centrifugal Backward-Bladed and Forward-Bladed Fans (원심형 후향익 및 원심다익홴의 설계 프로그램)

  • Park, J.-C.;Son, J.-M;Lee, S.;Jo, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.48-53
    • /
    • 2001
  • A centrifugal fan design code was developed and included in $DasignFan^{TM}$. This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in $DasignFan^{TM}$, predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller.

  • PDF

Design Program of Low Noise Centrifugal Fans (저소음 원심형 홴의 설계 프로그램)

  • 박준철;손정민;김기황;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.529-535
    • /
    • 2001
  • A centrifugal fan design code was developed and packaged together with iDesignFan/sup TM/ as new models. This code generate centrifugal forward curved and backward curved bladed impeller optimally. It also predicts the aerodynamic performance and the overall sound pressure level of the rotating fan by assuming steady blade loading. The overall sound pressure level is used as an input parameter from the third loop of the designing process to acquire the most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in the code, the period of designing a fan is significantly shortened. A centrifugal fan design code, developed in this study and included in iDesignFan/sup TM/, predicts the aerodynamic performance such as design flow rate and static pressure. The aerodynamic performance in the design and off-design conditions is calculated by using the mean line analysis. For the steady loading calculation, the lift force distribution in a blade is used.

  • PDF

Methodology for Centrifugal Stress Estimation Model Development of Large Steam Turbine Blades (스팀 터빈 블레이드 원심응력 추정을 위한 전산해석 연구)

  • Lee, Byounghak;Park, Jongho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.26-31
    • /
    • 2013
  • Last blades of low-pressure turbine in nuclear power plant are the highly damaged part and always suffered from different types of loadings leading to various stress components, stresses due to centrifugal force and steam flow loading. Especially, centrifugal stress generated by turbine rotation is one of the main problems and more significant than other stresses as they have the greatest effect on total stress. Therefore, this study was performed to obtain the important information for estimation model development of the blade centrifugal stress level and distribution.

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Characteristics of Cylindrical Electrostatic Precipitator with Centrifugal Effect (원심력 효과를 고려한 실린더형 전기집진기의 특성)

  • Lee, Joon;Jo, Yong-Soo;Yoa, Seok-Jun
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.351-358
    • /
    • 2001
  • The main purpose of this study was to investigate the characteristics of cylindrical electrostatic precipitator with centrifugal effect in viewpoints of pressure drip and collection efficiency, experimentally. The experiment was carried out for the analysis of current-voltage, pressure drop and collection efficiency with various experimental parameters such as the applied voltage, inlet velocity, inlet size and inlet type(upper and bottom), etc. In the results, the pressure drops were estimated as 27~54, $34~63mmH_2O$ for inlet size $15mm{\tiems}30mm$ and $30mm{\tiems}60mm$, respectively. The collection effeciencies were shown over 90% with the small inlet size($15mm{\tiems}30mm$) for the applied voltage 40kV, inlet velocity(15~21m/s), and 51~89% with the large inlet size ($30mm{\tiems}60mm$). Moreover, in the applied voltage 0kV and inlet size $15mm{\tiems}30mm$, the collection efficiency induced by centrifugal force was represented as about 35% with inlet velocity 15 - 21m/s.

  • PDF

Thrust Bearing Design for High-Speed Composite Air Spindles (고속 복합재료 공기 주축부를 위한 추력베어링 설계)

  • Bang, Kyung-Geun;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

Computational Study of the Magnetically Suspended Centrifugal Blood Pump (2nd Report: Pressure Fluctuation and Stability of Impeller Rotation for Different Volute Shapes)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.375-386
    • /
    • 2011
  • The turbo-type blood pump studied in this paper has an impeller that is magnetically suspended in a double volute casing. The impeller rotates with minimal fluctuations caused by fluid and magnetic forces. In order to improve stability of the rotating impeller and to facilitate long-term use, a careful investigation of the pressure fluctuations and of the fluid force acting on the impeller is necessary. For this purpose, two models of the pump with different volute cross-sectional area are designed and studied with computational fluid dynamics software. The results show that the fluid force varies with the flow rate and shape of the volute, that the fluctuations of fluid force decrease with increasing flow rate and that the vibratory movement of the impeller is more efficiently suppressed in a narrow volute.

Analysis and Evaluation of Capillary Passive Valves in Microfluidic Systems Using a Centrifugal Force

  • Cho, Han-Sang;Kim, Ho-Young;Kang, Ji-Yoon;Kwak, Seung-Min;Kim, Tae-Song
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.155-159
    • /
    • 2004
  • This work reports the theoretical and experimental investigations of capillary bust valves to regulate liquid flow in microchannels. The theoretical analysis uses the Young-Laplace equation and geometrical considerations to predict the pressure at the edge of the valve opening. Numerical simulations are employed to calculate the meniscus shape evolution while the interface is pinned at the valve edge. Microchannels and valves are fabricated using soft lithography. A wafer-rotating system, which can adjust the driving pressure by rotational speed, induces a liquid flow. Experimentally measured valve-bursting pressure agrees with theoretical predictions.