• Title/Summary/Keyword: Central water

Search Result 1,583, Processing Time 0.025 seconds

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh;Brahmbhatt, H.;Trivedi, G.S.;Bhattacharya, A.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.137-145
    • /
    • 2011
  • Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.

Administrative dose control for occupationally-exposed workers in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Jung, Yoonhee;Kim, Jeong Mi;Cho, Moonhyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.351-356
    • /
    • 2021
  • Korean nuclear power plants (NPPs) have various radiation protection programs to attain radiation exposure as low as reasonably achievable (ALARA). In terms of ALARA, this paper provides a comprehensive overview of administrative dose control for occupationally-exposed workers in Korean NPPs. In addition to dose limits, administrative dose constraints are implemented to resolve an inequity of radiation exposure in which some individuals in NPPs receive relatively higher doses than others. Occupational dose constraints in Korean NPPs are presented in this paper with the background of how those values were determined. For pressurized water reactors, 80% and 90% of the annual average limit for an effective dose, 20 mSv/y, are set as the primary and secondary dose constraints, respectively. Pressurized heavy water reactors (PHWRs) have also established the primary and secondary dose constraints corresponding to 70% and 80% of the effective dose limit, and additional constraints for tritium concentration are provided to control internal exposure in PHWRs. Follow-up measures for exceeding these administrative dose constraints are also introduced compared to exceeding the dose limits. Finally, analysis results of dose distributions show how the implementation of administrative dose constraints impacted the occupational dose distributions in Korean NPPs during the years 2009-2018.

SEM Observations on the Perithecia of Phyllactinia corylea Causing Powdery Mildew Disease in Mulberry

  • Kumar, Vineet;Dhar, Anil;Gupta, V.P.;Babu, A.M.;Sarkar, A.;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • Surface morphology of perithecia of the powdery mildew fungus of mulberry, Phyllactinia corylea is described under scanning electron microscope. The perithecia have penicellate cells on the upper surface and at an average 17 acicular appendages towards the lower surface each emerging from a bulbous base. Many perithecial walls towards the base have shrunken walls. When the perithecia dry out they are pushed above the leaf surface by the acicular append-ages which then bend at the base. The bending of the appendages may be attributed to the shrinkage of lower wall cells due to loss of water.

  • PDF

A Case of Central Diabetes Insipidus in Patient with Non-small Cell Lung Cancer (비소세포폐암에 합병된 중추성 요붕증 1예)

  • Hwang, Eun Mi;Oh, You Kyoung;Kim, Ki Jo;Kim, Yong Hyun;Yoon, Hyoung Kyu;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.3
    • /
    • pp.284-288
    • /
    • 2004
  • Central diabetes insipidus (DI) is a disease caused by insufficient release of antidiuretic hormone. Central DI with lung cancer is very rare. Most of them are caused by the pituitary metastasis, and rarely, by the paraneoplastic syndromes. Central DI is diagnosed by the water deprivation test. The treatment consists of surgical resection, radiotherapy and administration of desmopressin. We report an unusual case of central DI with non-small cell lung cancer. The diagnosis was confirmed by water deprivation test. After the administration of desmopressin, the urine osmolarity was increased. The patient's symptoms and urine osmolarity were improved by intranasal desmopressin.

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

A novel method for cell counting of Microcystis colonies in water resources using a digital imaging flow cytometer and microscope

  • Park, Jungsu;Kim, Yongje;Kim, Minjae;Lee, Woo Hyoung
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.397-403
    • /
    • 2019
  • Microcystis sp. is one of the most common harmful cyanobacteria that release toxic substances. Counting algal cells is often used for effective control of harmful algal blooms. However, Microcystis sp. is commonly observed as a colony, so counting individual cells is challenging, as it requires significant time and labor. It is urgent to develop an accurate, simple, and rapid method for counting algal cells for regulatory purposes, estimating the status of blooms, and practicing proper management of water resources. The flow cytometer and microscope (FlowCAM), which is a dynamic imaging particle analyzer, can provide a promising alternative for rapid and simple cell counting. However, there is no accurate method for counting individual cells within a Microcystis colony. Furthermore, cell counting based on two-dimensional images may yield inaccurate results and underestimate the number of algal cells in a colony. In this study, a three-dimensional cell counting approach using a novel model algorithm was developed for counting individual cells in a Microcystis colony using a FlowCAM. The developed model algorithm showed satisfactory performance for Microcystis sp. cell counting in water samples collected from two rivers, and can be used for algal management in fresh water systems.

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

Water Storage Cells in Succulent Orostachys malacophyllus (다육질성 둥근바위솔 수분저장세포의 특성)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.457-463
    • /
    • 1996
  • Water storage cells (WSCs) in the leaf succulent Orostachys malacophyllus have been studied to understand their adaptive nature to its coastal habitat employing the electron microscopy. Attention has been paid to the features of vacuoles and plasmodesmata in this study, since leaf tissues in O. malacaphyllus are under continous physiological drought due to its occurrence in the shore-line environment. The WSCs occupied almost all of the leaf volume and appeared empty at low magnifications. Among the WSCs, small rudimentary vascular bundles were scattered throughout the internal volume. However, in high magnification the WSCs were vacuolate in most cases and vacuolization into a well-developed huge central vacuole was very common phenomenon. Such vacuolization has been detected within the vacuoles as well as within the cytoplasms. Well-developed plasmodesmata were often found in cells appeared to be mucilagenous. Moreover, plasmodesmata being involved in the secretion of materials or structures were even encountered. Thus, vacuolization from various sizes of vacuoles in the WSCs to have a huge central vacuole seems playing an important role in adapting the plant itself to its coastal habitat.

  • PDF

Fouling resistant membrane tailored by polyethylene glycol in oxidative environment for desalination

  • Kavaiya, Ashish R.;Raval, Hiren D.
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.381-385
    • /
    • 2019
  • Surface modification is very efficient and scalable approach to achieve improved membrane performance. We treated Reverse Osmosis Thin Film Composite (TFC RO) membrane with various concentrations of Polyethylene Glycol (PEG), a hydrophilic polymer after activation with sodium hypochlorite. This treatment resulted in an increment of the water flux by 43% and the salt rejection by 2.36% for the 3000 mg/l PEG-treated membrane. Further, these PEG-treated membranes were exposed to a mixture of 3000 mg/l PEG and 1000 mg/l sodium hypochlorite for 1 hour. Further modification of this membrane by PEG and sodium hypochlorite mixture increased the water permeance up to 133% when compared with the virgin TFC RO membrane. We characterized the treated membranes to understand the changes in wettability by contact angle analysis, changes in surface morphology and roughness by scanning electron microscope (SEM) and atomic force microscope (AFM) analysis.