• 제목/요약/키워드: Central processing system

검색결과 324건 처리시간 0.03초

서버가상화 및 분산처리를 이용한 천리안해양관측위성 산출물 재처리 시스템 (GOCI Products Re-processing System (GPRS) Using Server Virtualization and Distributed Processing)

  • 양현;유정미;최우창;한희정;박영제
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.125-134
    • /
    • 2017
  • 최근 위성 기반 윈격 탐사 기술의 발전과 더불어 대용량 위성 자료를 효율적으로 처리하기 위한 능력이 요구되고 있다. 이 연구에서는 대용량 GOCI 산출물을 효율적으로 재처리하기 위해 서버가상화와 분산처리를 기반으로 한 GOCI 산출물 재처리 시스템(GOCI Products Re-processing System; GPRS)을 개발하는데 집중하였다. 실험 결과 GPRS를 이용하여 메모리 및 CPU의 사용률을 각각 약 100%, 75%까지 올릴 수 있었다. 이는 제안 시스템을 통해 하드웨어 자원을 절약함과 동시에 작업 처리 속도를 향상시킬 수 있다는 것을 의미한다.

앙상블 아키텍처 기반 중앙관제 시스템 설계 방법에 대한 연구 (A study on the design method of central control system based on ensemble architecture)

  • 조성원;김진오;손광철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.196-199
    • /
    • 2021
  • 오늘날 정보화 시스템은 우리 생활에 아주 밀접하게 접근하고 있다. 모든 이들이 생활을 접함에 있어서 이제 정보화 시스템은 당연하게 여겨지고 오히려 그에 대한 중요성에 대해 망각하고 사용하게 되었다. 그러나 우리의 실생활에 있어서 접목되는 정보화 시스템들이 과연 적절하고 효율적으로 구성되었는지 충분히 고민을 해봐야 한다. 정보화 시스템은 기획되고 개발되고 사용되고 궁극적으로는 최적화되어야 한다. 본 논문은 I-MOD 시스템의 구조를 가지고 여러 아키텍처 설계 방법론 중 골조의 근간이 하나가 아닌 다양한 방법론의 장점들을 융합하여 다양한 시각 입장으로 설계 방법을 풀어내려 연구하였다.

이중 기계학습 구조를 이용한 안구이동추적 기술개발 (Development of Eye-Tracking System Using Dual Machine Learning Structure)

  • 강경우;민철홍;김태선
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1111-1116
    • /
    • 2017
  • In this paper, we developed bio-signal based eye tracking system using electrooculogram (EOG) and electromyogram (EMG) which measured simultaneously from same electrodes. In this system, eye gazing position can be estimated using EOG signal and we can use EMG signal at the same time for additional command control interface. For EOG signal processing, PLA algorithms are applied to reduce processing complexity but still it can guarantee less than 0.2 seconds of reaction delay time. Also, we developed dual machine learning structure and it showed robust and enhanced tracking performances. Compare to conventional EOG based eye tracking system, developed system requires relatively light hardware system specification with only two skin contact electrodes on both sides of temples and it has advantages on application to mobile equipments or wearable devices. Developed system can provide a different UX for consumers and especially it would be helpful to disabled persons with application to orthotics for those of quadriplegia or communication tools for those of intellectual disabilities.

Real-time Implementation of an Identifier for Nonstationary Time-varying Signals and Systems

  • Kim, Jong-Weon;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권3E호
    • /
    • pp.13-18
    • /
    • 1996
  • A real-time identifier for the nonstationary time-varying signals and systems was implemented using a low cost DSP (digital signal processing) chip. The identifier is comprised of I/O units, a central processing unit, a control unit and its supporting software. In order t estimate the system accurately and to reduce quantization error during arithmetic operation, the firmware was programmed with 64-bit extended precision arithmetic. The performance of the identifier was verified by comparing with the simulation results. The implemented real-time identifier has negligible quantization errors and its real-time processing capability crresponds to 0.6kHz for the nonstationary AR (autoregressive) model with n=4 and m=1.

  • PDF

실시간 탄도 궤적 목표물 추적을 위한 GPU 기반 병렬적 입자군집최적화 기법 (Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking)

  • 한윤호;이헌철;권혁훈;최원석;정보라
    • 대한임베디드공학회논문지
    • /
    • 제17권6호
    • /
    • pp.355-365
    • /
    • 2022
  • This paper addresses the problem of real-time tracking a high-speed ballistic target. Particle filters can be considered to overcome the nonlinearity in motion and measurement models in the ballistic target. However, it is difficult to apply particle filters to real-time systems because particle filters generally require much computation time. This paper proposes an accelerated particle filter using graphics processing unit (GPU) for real-time ballistic target tracking. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional particle filter on CPU (central processing unit) showed that the proposed method improved the real-time performance by reducing computation time significantly.

항적모델 추출을 통한 해상교통관제사 의사결정 지원 방안 (Decision Making Support System for VTSO using Extracted Ships' Tracks)

  • 김주성;정중식;정재용;김윤하;최익환;김진한
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 춘계학술대회
    • /
    • pp.310-311
    • /
    • 2015
  • 선박 항적 데이터는 해상교통관제센터에 의해 실시간으로 모니터링 되고 수집되어 진다. 이러한 데이터를 기반으로 선박의 항적 패턴분석과 항적 모델을 추출하여 해상교통관제사의 의사결정에 기여하고자 한다. 항적 데이터의 처리와 가공, 항적 모델링을 위하여 SVM알고리즘이 사용되었으며, 적정 파라미터 선정을 위하여 k-fold cross validation이 사용되었다. 제안된 항적 데이터 모델링을 통하여 이상거동 선박의 사전 판별, 선박의 추측위치 계산 등에 응용하여 해상교통과제사의 의사결정을 지원하고자 한다.

  • PDF

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Using Kalman Filtering and Segmentation Techniques to Capture and Detect Cracks in Pavement

  • Hsu, C.J.;Chen, C.F.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.930-932
    • /
    • 2003
  • For this study we used a CCD video camera to capture the pavement image information via the computer. During investigation processing, the CCD video camera captured 10${\sim}$30 images per second. If the vehicle velocity is too fast, the collected images will be duplicated and if the velocity is too slow there will be a gapped between images. Therefore, in order to control the efficiency of the image grabber we should add accessory tools such as the Differential Global Positioning System (DGPS) and odometer. Furthermore, Kalman Filtering can also solve these problems. After the CCD video camera captured the pavement images, we used the Least-Squares method to eliminate images of gradation which have non-uniform surfaces due to the illumination at night. The Fuzzy Entropy method calculates images of threshold segments and creates binary images. Finally, the Object Labeling algorithm finds objects that are cracks or noises from the binary image based on volume pixels of the object. We used these algorithms and tested them, also providing some discussion and suggestions.

  • PDF

철도역사 안전을 위한 비전기반 승강장 모니터링 시스템 (Vision based Monitoring System for Safety in Railway Station)

  • 오세찬;박성혁;이장무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.953-958
    • /
    • 2007
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they are fallen from train platforms. In this paper, we propose a vision based monitoring system for railway station platform. The system immediately perceives dangerous factors of passengers on the platform by using image processing technology. To monitor almost entire length of the track line in the platform, we use several video cameras. Each camera conducts surveillance its own preset monitoring area whether human or dangerous object was fallen in the area. Moreover, to deal with the accident immediately, the system provides local station, central control room employees and train driver with the video information about the accident situation including alarm message. This paper introduces the system overview and detection process with experimental results. According to the results, we expect the proposed system will play a key role for establishing highly intelligent monitoring system in railway.

  • PDF

A Design of Cooperation Coordinator using Band-Cloud

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.90-97
    • /
    • 2017
  • The Internet of Things(IoT) market is expected to grow from 15.5billion to 75.4 billion by 2015-2025. As the number of IoT devices increases, the amount of data that is sent to the cloud is increasing. Today's Cloud Computing models are not suited to handle the vast amount of data generated by IoT devices. In this paper, we propose a Cooperation Coordinator System that reduces server load and improved real-time processing capability under specific circumstances by using Band-Cloud. The cooperation coordinator system dynamically forms the cloud when cooperation is needed between mobile devices located near. It is called Band-Cloud. Band-Cloud provides services entrusted by Central Cloud. This paper describes the proposed system and shows the cooperation process using the Android-based mobile devices and Wi-Fi Direct technology. Such a system can be applied to cases where real-time processing is required in a narrow area such as a hospital ward or a school classroom.