• 제목/요약/키워드: Central neuron

검색결과 99건 처리시간 0.024초

Effects of Oriental Medicinal Drugs on Axonal Regeneration in the Spinal Cord Neurons

  • An Joung-Jo;NamGung Uk;Seo In-Chan;Kim Yoon-Sik
    • 동의생리병리학회지
    • /
    • 제19권6호
    • /
    • pp.1640-1646
    • /
    • 2005
  • An oriental medicinal drugs Jahageo (JHG, Hominis placenta) were examined to determine its effects on the responsiveness of central nervous system neurons after injury. We found that JHG was involved in neurite outgrowth of DRG sensory axons. JHG treatment also increased expression of axonal growth-associated protein GAP-43 in DRG sensory neurons after sciatic nerve injury and in the injured spinal cord. JHG treatment during the spinal cord injury increased induction levels of cell division cycle 2 (Cdc2) protein in DRG as well as in the spinal cord. Histochemical investigation showed that induced Cdc2 in the injured spinal cord was found in non-neuronal cells. These results suggest that JHG regulates activities of non-neuronal cells such as oligodendrocyte and astrocyte in responses to spinal cord injury and protects neuronal responsiveness after axonal damage.

Phenylethanolamine N-methyltransferase: 부신, 뇌간, 시상하부 효소의 조절 (Phenylethanolamine N-methyltransferase: Regulation of the Enzyme in Adrenal Gland, Brain Stem and Hypothalamus)

  • 전양숙;서유헌
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.159-168
    • /
    • 1996
  • To determine the regulatory mechanism of phenylethanolamine N-methyltransferase (PNMT) in the adrenal gland and in central nervous system, we observed the change of enzyme activity and mRNA level of PNMT in the adrenal gland, the brain stem, and hypothalamus of rats, which were injected with two neuroleptic agents(reserpine and haloperidol ). Reserpine depleting catecholamines in presynaptic vesicle increased PNMT activities in the adrenal gland and the brain stem to 150% of the control in time-dependent manner, but not in the hypothalamus. Haloperidol blocking dopamine receptor decreased PNMT activities in the adrenal gland and the hypothalamus, but not in the brain stem. Thus, the results indicate that catecholamines inhibit synthesis of epinephrine in the brain stem and the adrenal gland, and that dopamine stimulates synthesis of epinephrine in the hypothalamus and the adrenal gland. In addition, since the change of mRNA levels were nearly in accordance with the change of activities, the transcriptional regulation of PNMT is considered the mechanism of the regulation of epinephrine neuron.

  • PDF

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Functional significance of rSK2 N-terminal region revealed by electrophysiology and Preliminary Structural Studies

  • Narae Shin;Kang, Gil-boo;Eom, Soo-Hyun;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.41-41
    • /
    • 2003
  • Small conductance calcium-activated potassium channels (or SKCa channels) are potassium selective, voltage-independent, and activated by intracellular calcium concentration. These channels play important roles in excitable cells such as neuron in the central nervous system (Vergara et al., 1998). The activity of SKCa channels underlies the slow afterhyperpolarization that inhibits neuronal cell firing (Hille, 1991; Vergara et al.,1998). Until now, N-terminal region of rSK2 isn't characterized. To study the role of N-terminus, we constructed the N-terminal deletion mutant and characterized by electrophysiological means. Interestingly, N-terminal deletion mutant be trafficked to membrane couldn't evoke any ionic currents. Thus, N-terminal region has a role in functional rSK2 channel formation. To elucidate the function of N-terminal region, (His)6-conjugated protein was purified and filtrated by affinity column chromatography. Surprisingly, N-terminal region was shown in tetramer size that was supported by cross-linking result. Thus, we predicted that N-terminal region might be involved in the tetramerization of rSK2.

  • PDF

Apoptosis Induction Effect of Zingiberis Rhizoma Extract in Microglia BV-2 Cells

  • Seo, Jeongbin;Oh, Myung Sook;Jang, Young Pyo;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제42권1호
    • /
    • pp.9-15
    • /
    • 2017
  • Microglia have multiple functions in regulating homeostasis of the central nervous system. Microglia cells have been implicated as active contributors to neuron damage in neurodegenerative disorders. In this study, medicinal plant extracts (MPEs) were used to evaluate the cell-death induction effect in microglia BV-2 cells. Among 35 MPEs tested in this study, 4 MPEs showed less than a 30% cell survival after 24 hours of incubation. These were Foeniculi Fructus, Forsythiae Fructus, Zingiberis Rhizoma and Hedera Rhombea. The concentration showed that 50% cell death ($IC_{50}$) occurred with 33, 83, 67 Ed highlight: Please confirm wording, and $81{\mu}/ml$, respectively. For further study, we chose Zingiberis Rhizoma (ZR) which showed a reasonably low $IC_{50}$ value and an induction of cell death in a relatively narrow range. Western blot analysis showed that ZR-treated cells showed activation of caspase-3 and cleavage of PARP Ed highlight: When an acronym is first presented it needs to be spelled out in both dose- and time-dependent manners. However, the level of Bcl-2 and Bax were not changed by ZR-treatment in BV-2 cells. These results suggest that ZR-induced apoptosis in BV-2 cells occured through caspase-3 activation. The results also suggested that ZR may be useful in developing treatments for neurodegenerative diseases.

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko;Takebayashi, Hirohide;Ikenaka, Kazuhiro
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.397-401
    • /
    • 2009
  • Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.

Role of microglial activation on neuronal excitability in rat substantia gelatinosa

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.225-231
    • /
    • 2020
  • Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2·-), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.

별늑대거미 (Pardosa astrigera L. Koch) 전측안(前側眼) 망막(綱膜)의 미세구조(微細構造)에 관한 연구 (Study on the Fine Structure of Retina of Anterior Lateral Eyes in Pardosa astrigera L. Koch (Aranea: Lycosidae))

  • 정문진;문명진
    • Applied Microscopy
    • /
    • 제24권3호
    • /
    • pp.1-9
    • /
    • 1994
  • 별늑대거미의 전측안은 전중안과 함께 전방을 향하여 앞이마 제 1 열에 위치하고 있었으며, 조직학적 조성은 각막, 렌즈, 초자체, 그리고 망막으로 이루어져 있었다. 큐티클성 각막층은 표피의 외큐티클(exocuticle)과 연결되어 있었고, 렌즈는 두개의 볼록렌즈가 내외 양방향으로 연결된 biconvex type이었고, 초자체는 단층의 원주세포로 오목렌즈 모양으로 관찰되었다. 망막을 구성하는 시세포는 단극성 신경세포 (unipolar neuron)로 확인되었으며, 크기가 시세포의 길이에 비하여 큰 세포체가 매우 불규칙 한 크기로 분포하고 있었다. 미세융모로 이루어진 감간체는 세포체 아래에 분포하고 있었으며, 이 부위의 시세포 사이에서는 전자밀도가 높은 색소과립이 관찰되었다. 교질세포는 시세포의 세포체 사이에 분포하였고, 반사층(tapetum)은 감간과 시세포 미부(intermediate segment) 부위 사이에 4-5 정도의 층을 이루어 존재하였다.

  • PDF

Molecular Characterization of Ischemia-Responsive Protein 94 (irp94) Response to Unfolded Protein Responses in the Neuron

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.81-89
    • /
    • 2006
  • The ischemia-responsive 94 gene (irp94) encoding a 94 kDa endoplasmic reticulum resident protein was investigated its molecular properties associated with unfoled protein responses. First, the expression of irp94 mRNA was tested after the reperfusion of the transient forebrain ischemia induction at the central nervous system in three Mongolian gerbils. Second, irp94 expression in PC12 cells, which are derived from transplantable rat pheochromocytoma cultured in the DMEM media, was tested at transcriptional and translational levels. The half life of irp94 mRNA was also determined In PC12 cells. Last, the changes of irp94 mRNA expression were investigated by the addition of various ER stress inducible chemicals (A23187, BFA, tunicamycin, DTT and $H_2O_2$) and proteasome inhibitors, and heat shock. High level expression of irp94 mRNA was detected after 3 hours reperfusion in the both sites of the cerebral cortex and hippocampus of the gerbil brain. The main regulation of irp94 mRNA expression in PC 12 cells was determined at the transcriptional level. The half life of irp94 mRNA in PC12 cells was approximately 5 hours after the initial translation. The remarkable expression of irp94 mRNA was detected by the treatment of tunicamycin, which blocks glycosylation of newly synthesized polypeptides, and $H_2O_2$, which induces apoptosis. When PC12 cells were treated with the cytosol proteasome inhibitors such as ALLN (N-acetyl-leucyl-norleucinal) and MG 132 (methylguanidine), irp94 mRNA expression was increased. These results indicate that expression of irp94 was induced by ER stress including oxidation condition and glycosylation blocking in proteins. Expression of irp94 was increased when the cells were chased after heat shock, suggesting that irp94 may be involved in recovery rather than protection against ER stresses. In addition, irp94 expression was remarkably increased when cytosol proteasomes were inhibited by ALLN and MG 132, suggesting that irp94 plays an important role for maintaining the ERAD (endoplasmic reticulum associated degradation) function.

  • PDF

족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究) (Localization of the Neurons Projecting to the Gallbladder Meridian)

  • 육상원;이광규;이상룡;김점영;이창현;이봉희
    • Korean Journal of Acupuncture
    • /
    • 제17권1호
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF