• Title/Summary/Keyword: Central band

Search Result 258, Processing Time 0.024 seconds

FUV observation of the comet C/2001 Q4 (NEAT) with FIMS

  • Lim, Yeo-Myeong;Min, Kyoung Wook;Feldman, Paul D.;Han, Wonyong;Edelstein, Jerry
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.107.1-107.1
    • /
    • 2012
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Delta}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4^{\prime}.6$, L: $7^{\circ}.5{\times}4^{\prime}.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A^1{\Pi}-X^1{\Sigma}^+$ system in the L channel. Production rates of the notable molecules, such as C I, S I and CO, were estimated from the photon fluxes of these spectral lines and compared with previous observations. We compare the flux and the production rates in the radius of $3{\times}10^5$ km with $20{\times}10^5$ km from the central coma. We obtained L-channel image which have map size $5^{\circ}{\times}5^{\circ}$ The image was constructed for the wavelength band of L-channel (1350 - 1710 ${\AA}$. We also present the radial profiles of S I, C I, CO obtained from the spectral images of the central coma. The radial profiles of $2{\times}10^6$ km region are compared with the Haser model.

  • PDF

SAW Filter Transmission Characteristics Design with Genetic Algorithm

  • Park, Kyu­-Chil;Kim, Seok­-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1767-1775
    • /
    • 2003
  • The SAW device is extensively used as a electro$.$mechanical band­pass filter in which a two­pairs of interdigital transducers are provided over the surface of the piezoelectric substrate. For the design requirement, the central frequency and the bandwidth of the passband, and the attenuation level of the stopband region are specified. The configuration is made so as to satisfy the specification given. The central frequency is mainly determined by the distance between the pair of the finger electrodes. The design is considered as an optimization problem with which the error norm, the distance between the desired characteristics and the calculated for a given model is to be minimized. The delta function model and the electrical equivalent circuit model are utilized to represent the SAW filter characteristics. Genetic algorithm is used for optimization in which apodization of the transducer fingers is chosen as a design variable.

High-resolution ALMA Study of the Proto-Brown-Dwarf Candidate L328-IRS

  • Lee, Chang Won;Kim, Gwanjeong;Myers, Philip C.;Saito, Masao;Kim, Shinyoung;Kwon, Woojin;Lyo, A-Ran;Soam, Archana;Kim, Mi-Ryang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • We present our observational attempts to precisely measure the central mass of a proto-brown dwarf candidate, L328-IRS, in order to investigate whether L328-IRS is in the substellar mass regime. Observations were made for the central region of L328-IRS with the dust continuum and CO isotopologue line emission at ALMA band 6, discovering the detailed outflow activities and a deconvolved disk structure of a size of ${\sim}87AU{\times}{\sim}37AU$. We investigated the rotational velocities as a function of the disk radius, finding that its motions between 130 AU and 60 AU are partially fitted with a Keplerian orbit by a stellar object of ${\sim}0.30M_{\odot}$, while the motions within 60 AU do not follow any Keplerian orbit at all. This makes it difficult to lead a reliable estimation of the mass of L328-IRS. Nonetheless, our ALMA observations were useful enough to well constrain the inclination angle of the outflow cavity of L328-IRS as ${\sim}66^{\circ}$ degree, enabling us to better determine the mass accretion rate of ${\sim}8.9{\times}10^{-7}M_{\odot}yr-1$.From assumptions that the internal luminosity of L328-IRS is mostly due to this mass accretion process in the disk, or that L328-IRS has mostly accumulated the mass through this constant accretion rate during its outflow activity, its mass was estimated to be ${\sim}0.012-0.023M_{\odot}$, suggesting L328-IRS to be a substellar object. However, we leave our identification of L328-IRS as a proto-brown dwarf to be tentative because of various uncertainties especially regarding the mass accretion rate.

  • PDF

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Integration of top-down and bottom-up approaches for a complementary high spatial resolution satellite rainfall product in South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.153-153
    • /
    • 2022
  • Large-scale and accurate observations at fine spatial resolution through a means of remote sensing offer an effective tool for capturing rainfall variability over the traditional rain gauges and weather radars. Although satellite rainfall products (SRPs) derived using two major estimation approaches were evaluated worldwide, their practical applications suffered from limitations. In particular, the traditional top-down SRPs (e.g., IMERG), which are based on direct estimation of rain rate from microwave satellite observations, are mainly restricted with their coarse spatial resolution, while applications of the bottom-up approach, which allows backward estimation of rainfall from soil moisture signals, to novel high spatial resolution soil moisture satellite sensors over South Korea are not introduced. Thus, this study aims to evaluate the performances of a state-of-the-art bottom-up SRP (the self-calibrated SM2RAIN model) applied to the C-band SAR Sentinel-1, a statistically downscaled version of the conventional top-down IMERG SRP, and their integration for a targeted high spatial resolution of 0.01° (~ 1-km) over central South Korea, where the differences in climate zones (coastal region vs. mainland region) and vegetation covers (croplands vs. mixed forests) are highlighted. The results indicated that each single SRP can provide plus points in distinct climatic and vegetated conditions, while their drawbacks have existed. Superior performance was obtained by merging these individual SRPs, providing preliminary results on a complementary high spatial resolution SRP over central South Korea. This study results shed light on the further development of integration framework and a complementary high spatial resolution rainfall product from multi-satellite sensors as well as multi-observing systems (integrated gauge-radar-satellite) extending for entire South Korea, toward the demands for urban hydrology and microscale agriculture.

  • PDF

Morphological characteristics and genetic diversity of Calanthe species native to Korea (한국 자생 새우난초의 형태적 특성 및 유전적 다양성)

  • Cho, Dong-Hoon;Choi, Young-Whan;Kang, Jum-Soon;Lee, Yong-Jae;Choi, In-Soo;Lee, Young-Geun;Jee, Sun-Ok;Kim, Kyung-Min;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.312-317
    • /
    • 2007
  • This study was conducted to research the morphological characteristics and analyze the genetic diversity by using RAPD in Calanthe species native to Korea. Nine samples were selected by flower color and 19 morphological characteristics. In the length and width of leaf, dorsal sepal, the lateral sepal, the petal, the central lip, and the lateral lip, C. discolor was the shortest and narrowest, respectively, but C. sieboldii was the longest and the widest, respectively. The flower stalk length was the shortest in C. discolor, and the longest in C. sieboldii. Three variants were the intermediate between C. discolor and C. sieboldii in the above morphological characteristics, but spur length was the longest in C. discolor, the shortest in C. sieboldii, and intermediate in the variants. The ovary length in C. discolor was shortest and C. sieboldii and variants were similar with each other. The flower color of C. discolor were brownish red, the value of CIE Lab was between 40 and 50. The flower color of C. sieboldii was yellowish, the value of CIE Lab was between 110 and 130. And variants had various colors between 50 to 70 in the value of CIE Lab. By analyzing multiple band patterns of PCR products, 154 bands were selected as polymorphic RAPD markers. The analysis of genetic similarity of Calanther species using RAPD showed that C. discolor and C. sieboldii are more distant from each other than variants, and these results demonstrated that genetic position of variants located between C. discolor and C. sieboldii.

The Fabrication and Characteristic for Narrow-band Pass Color-filter Deposited by Ti3O5/SiO2 Multilayer (Ti3O5/SiO2 다층박막를 이용한 협대역 칼라투과필터 제작 및 특성연구)

  • Park, Moon-Chan;Ko, Kyun-Chae;Lee, Wha-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.357-362
    • /
    • 2011
  • Purpose: The narrow-band pass color-filters with a 500 nm central wavelength and 12 nm FWHM using $Ti_3O_5/SiO_2$ mutilayer were fabricated, and their characteristics and structures were studied. Methods: the optical constants, n and k, of the $Ti_3O_5$ and $SiO_2$ thin films were obtained from the transmittances of their thin film. The narrow-band pass color-filters were designed with these optical constants and the AR coating of the filter was also designed. $Ti_3O_5/SiO_2$ multilayer filters were made by electron beam evaporation apparatus and the transmittaces of the filters were measured by spectrophotometer. the number of layers and the thicknesses of filters were calculated from the cross section of filters by SEM image and the composition of filters was analysed by XPS analysis. Results: The optimization of AR coating for the narrow-band pass color-filter was [air$|SiO_2(90)|Ti_3O_5(36)|SiO_2(5)|Ti_3O_5(73)|SiO_2(30)|Ti_3O_5(15)|$ glass], and the optimization of filter layer for the color filter was [air$|SiO_2(192)|Ti_3O_5(64)|SiO_2(102)|Ti_3O_5(66)|SiO_2(112)|Ti_3O_5(74)|SiO_2(120)|Ti_3O_5(68)|SiO_2(123)|Ti_3O_5(80)|SiO_2(109)|Ti_3O_5(70)|SiO_2(105)|Ti_3O_5(62)|SiO_2(99)|Ti_3O_5(63)|SiO_2(98)|Ti_3O_5(51)|SiO_2(60)|Ti_3O_5(42)|SiO_2(113)|Ti_3O_5(88)|SiO_2(116)|Ti_3O_5(68)|SiO_2(89)|Ti_3O_5(49)|SiO_2(77)|Ti_3O_5(48)|SiO_2(84)|Ti_3O_5(51)|SiO_2(85)|Ti_3O_5(48)|SiO_2(59)|Ti_3O_5(34)|SiO_2(71)|Ti_3O_5(44)|SiO_2(65)|Ti_3O_5(45)|SiO_2(81)|Ti_3O_5(52)|SiO_2(88)|$ glass]. It was known that the color-filters fabricated by the simulation data were composed of 41 layers by SEM image and the top layer of filters was $SiO_2$ layer and the filters were composed of $SiO_2$/$Ti_3O_5$ multilayer by XPS analysis. It was also known that the mixed thin film of TiO2 and $Ti_3O_5$ was made during the deposition of the $Ti_3O_5$ material. Conclusions: The narrow-band pass color-filters with a 500 nm central wavelength and 12 nm FWHM using $Ti_3O_5/SiO_2$ mutilayer of 41 layer were fabricated, and it was known that the mixed form of TiO2 and $Ti_3O_5$ thin film was made during the deposition of the $Ti_3O_5$ material.

A Study on the Reflection of Rabbit Nervous Tissue After Electromagnetic Irradiation and the Effect of Nimodipine Injection (전자파에 노출된 토끼의 뇌신경조직의 반응과 Nimodipine 투여효과에 관한 연구)

  • 이근호;김영태
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.81-90
    • /
    • 1998
  • Electromagnetic waves may induce various effects on nervous tissues either by thermal or non-thermal mechanisms. This paper intoduces a method to evalute the non-thermal effect to central nervous system by measuring the EEGs of the rabbits treated by nimodipine before exposed to weak microwave field. 20 rabbits were divided into 2 groups and their EEGs were measured after their head section were exposed to 2,450 MHz microwave with the power density of 10 dBm and 20 dBm respectively for 10 minutes and compared with those of the 3rd group of 10 rabbits which were not exposed. The 4th group of 10 rabbits were intravenously given with nimodipine before exposed to 20 dBm field to determine whether this drug would reverse the EEGs changes induced by weak microwave irradiation. As field poser exceeded 20 dBm although no significant physiological changes were observed, total induced EEGs power was remarkably decreased suggesting the presence of CNS activation. Using Fourier analysis on the EEGs signal it was found that remarkable decrease in delta band and increase in the alpha and beta bands in a significant manner(P<0.05) compared to control group. The changes were, however, not reversed by nimodipine-treatment. The effects may be pure thermal in nature because no significant change has been observed in nimodipine treated rabbits.

  • PDF

The Technology Trend of Interconnection Network for High Performance Computing (고성능 컴퓨팅을 위한 인터커넥션 네트워크 기술 동향)

  • Cho, Hyeyoung;Jun, Tae Joon;Han, Jiyong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.9-15
    • /
    • 2017
  • With the development of semiconductor integration technology, central processing units and storage devices have been miniaturized and performance has been rapidly developed, interconnection network technology is becoming a more important factor in terms of the performance of high performance computing system. In this paper, we analyze the trend of interconnection network technology used in high performance computing. Interconnect technology, which is the most widely used in the Supercomputer Top 500(2017. 06.), is an Infiniband. Recently, Ethernet is the second highest share after InfiniBand due to the emergence of 40/100Gbps Gigabit Ethernet technology. Gigabit Ethernet, where latency performance is lower than InfiniBand, is preferred in cost-effective medium-sized data centers. In addition, top-end HPC systems that demand high performance are devoting themselves from Ethernet and InfiniBand technologies and are attempting to maximize system performance by introducing their own interconnect networks. In the future, high-performance interconnects are expected to utilize silicon-based optical communication technology to exchange data with light.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.