• Title/Summary/Keyword: Central Neuropathic Pain

Search Result 64, Processing Time 0.027 seconds

The mechanism of action of pulsed radiofrequency in reducing pain: a narrative review

  • Park, Donghwi;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.200-205
    • /
    • 2022
  • Pain from nervous or musculoskeletal disorders is one of the most common complaints in clinical practice. Corticosteroids have a high pain-reducing effect, and their injection is generally used to control various types of pain. However, they have various adverse effects including flushing, hyperglycemia, allergic reactions, menstrual changes, immunosuppression, and adrenal suppression. Pulsed radiofrequency (PRF) is known to have a pain-reducing effect similar to that of corticosteroid injection, with nearly no major side effects. Therefore, it has been widely used to treat various types of pain, such as neuropathic, joint, discogenic, and muscle pain. In the current review, we outlined the pain-reducing mechanisms of PRF by reviewing previous studies. When PRF was first introduced, it was supposed to reduce pain by long-term depression of pain signaling from the peripheral nerve to the central nervous system. In addition, deactivation of microglia at the level of the spinal dorsal horn, reduction of proinflammatory cytokines, increased endogenous opioid precursor messenger ribonucleic acid, enhancement of noradrenergic and serotonergic descending pain inhibitory pathways, suppression of excitation of C-afferent fibers, and microscopic damage of nociceptive C- and A-delta fibers have been found to contribute to pain reduction after PRF application. However, the pain-reducing mechanism of PRF has not been clearly and definitely elucidated. Further studies are warranted to clarify the pain-reducing mechanism of PRF.

Effects of Agmatine on GABAA Receptor Antagonist-induced Tactile Allodynia (Agmatine이 GABAA 수용체 길항제로 유도한 촉각이질통에 미치는 효과)

  • Lee, Youn Woo;Ishikawa, Toshizo
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Background: The intrathecal (IT) $GABA_A$ receptor antagonist, bicuculline (BIC), results in tactile allodynia (TA) through disinhibition in the spinal cord. Such disinhibition is considered to be an important mechanism for neuropathic pain. Agmatine, an endogenous polyamine, has a neuro-protective effect in the central nervous system. We investigated the analgesic effects and mechanisms of agmatine action on BIC-induced TA. Methods: Male Sprague-Dawley rats, weighting 250-300 g, were subjected to implantations of PE-10 into the lumbar subarachnoid space for IT drug injection. Five days after surgery, either $10{\mu}l$ of normal saline (NS) or agmatine ($30{\mu}g$ or $10{\mu}g$) in $10{\mu}l$ NS were injected 10 min prior to BIC ($10{\mu}g$) or NMDA ($5{\mu}g$). We assessed the degree of TA (graded 0: no response, 1: mild response, 2: moderate response, 3: strong response) every 5 min for 30 min. Areas under curves and degree of TA were expressed as mean ${\pm}$ SEM. Results were analyzed using one-way ANOVA followed by a Tukey test for multiple comparisons. P < 0.05 was considered significant. Results: IT BIC-induced strong TA reached its peak and plateaued between 10 to 15 min. IT NS-NMDA induced mild transient TA for up to 15 min. Preemptive IT AG attenuated IT BIC-induced TA dose dependently and preemptive IT AG10 completely abolished the IT NMDA-induced TA. Conclusions: Preemptive IT AG attenuated the IT BIC-induced TA through inhibitory actions on postsynaptic NMDA receptor activation. AG might be a viable therapeutic option in the treatment of neuropathic pain.

An Introduction of IMS(Intramuscular Stimulation Therapy) with Theoretcial Basis and Clinical Applications (IMS(Intramuscular Stimulation Therapy)의 이론적 배경과 임상적 운용에 대한 고찰)

  • Kwon, Ki-Rok;Gok, Kyung-Seung;Kim, Sung-Wook
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.159-164
    • /
    • 2003
  • Results : 1. The most important concept of IMS is chronic pain illness that may develop into hypersensitivity of the nerves, i.e., neuropathy. 2. Muscle shortening may be triggered by stress, including emotional, physical, external, and internal factors. 3. Muscle shortening increases mechanical tension on the muscles as well as inducing abrasion of the tissues by stretching ligament, tendon, cartilage, bone, and etc. 4. Pain from neuropathy is normally manifested on musculoskeletal system and spasm or shortening play as the central axis of this pain. 5. Neuropathy often appears at the nerve root level and the most important decisive factor of radiculopathy is muscle shortening. 6. Spondylosis is the most common cause of radiculopathy. 7. The most significant treatment principle of IMS is to relieve muscle shortening and remove stimulating determinant from the vertebrae. 8. Dry needling is quite effective for treating various pain caused by muscle shortening.

Superoxide and Nitric Oxide Involvement in Enhancing of N-methyl-D-aspartate Receptor-Mediated Central Sensitization in the Chronic Post-ischemia Pain Model

  • Ryu, Tae-Ha;Jung, Kyung-Young;Ha, Mi-Jin;Kwak, Kyung-Hwa;Lim, Dong-Gun;Hong, Jung-Gil
    • The Korean Journal of Pain
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Background: Recent studies indicate that reactive oxygen species (ROS) are involved in persistent pain, including neuropathic and inflammatory pain. Since the data suggest that ROS are involved in central sensitization, the present study examines the levels of activated N-methyl-D-aspartate (NMDA) receptors in the dorsal horn after an exogenous supply of three antioxidants in rats with chronic post-ischemia pain (CPIP). This serves as an animal model of complex regional pain syndrome type-I induced by hindpaw ischemia/reperfusion injury. Methods: The application of tight-fitting O-rings for a period of three hours produced CPIP in male Sprague-Dawley rats. Allopurinol 4 mg/kg, allopurinol 40 mg/kg, superoxide dismutase (SOD) 4,000 U/kg, N-nitro-L-arginine methyl ester (L-NAME) 10 mg/kg and SOD 4,000 U/kg plus L-NAME 10 mg/kg were administered intraperitoneally just after O-ring application and on the first and second days after reperfusion. Mechanical allodynia was measured, and activation of the NMDA receptor subunit 1 (pNR1) of the lumbar spinal cord (L4-L6) was analyzed by the Western blot three days after reperfusion. Results: Allopurinol reduced mechanical allodynia and attenuated the enhancement of spinal pNR1 expression in CPIP rats. SOD and L-NAME also blocked spinal pNR1 in accordance with the reduced mechanical allodynia in rats with CPIP. Conclusions: The present data suggest the contribution of superoxide, produced via xanthine oxidase, and the participation of superoxide and nitric oxide as a precursor of peroxynitrite in NMDA mediated central sensitization. Finally, the findings support a therapeutic potential for the manipulation of superoxide and nitric oxide in ischemia/reperfusion related pain conditions.

Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla

  • Li, Yaqun;Kang, Dong Ho;Kim, Woong Mo;Lee, Hyung Gon;Kim, Seung Hoon;You, Hyun Eung;Choi, Jeong Il;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Supraspinal delivery of neurotensin (NTS), which may contribute to the effect of a systemically administered agonist, has been reported to be either pronociceptive or antinociceptive. Here, we evaluated the effects of systemically administered NTSR1 agonist in a rat model of neuropathic pain and elucidated the underlying supraspinal mechanism. Methods: Neuropathic pain was induced by L5 and L6 spinal nerve ligation in male Sprague-Dawley rats. The effects of intraperitoneally administered NTSR1 agonist PD 149163 was assessed using von Frey filaments. To examine the role of 5-HT neurotransmission, a serotonin (5-HT) receptor antagonist dihydroergocristine was pretreated intrathecally, and spinal microdialysis studies were performed to measure the change in extracellular level of 5-HT in response to PD 149163 administration. To investigate the supraspinal mechanism, NTSR1 antagonist 48692 was microinjected into the rostral ventromedial medulla (RVM) prior to systemic PD 149163. Additionally, the effect of intrathecal DHE on intra-RVM PD 149163 was assessed. Results: Intraperitoneally administered PD 149163 exhibited a dose-dependent attenuation of mechanical allodynia. This effect was partially reversed by intrathecal pretreatment with dihydroergocristine and was accompanied by an increased extracellular level of 5-HT in the spinal cord. The PD 149163-produced antinociception was also blocked by intra-RVM SB 48692. Direct injection of PD 149163 into the RVM mimicked the maximum effect of the same drug delivered intraperitoneally, which was reversed by intrathecal dihydroergocristine. Conclusions: These observations indicate that systemically administered NTSR1 agonist produces antinociception through the NTSR1 in the RVM, activating descending serotonergic projection to release 5-HT into the spinal dorsal horn.

Perioperative duloxetine as part of a multimodal analgesia regime reduces postoperative pain in lumbar canal stenosis surgery: a randomized, triple blind, and placebo-controlled trial

  • Govil, Nishith;Parag, Kumar;Arora, Pankaj;Khandelwal, Hariom;Singh, Ashutosh;Ruchi, Ruchi
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2020
  • Background: Duloxetine is an antidepressant that is also useful in chronic neuropathic and central origin pain. In this study, the role of duloxetine in decreasing acute postoperative pain after lumbar canal stenosis surgery is explored. Methods: In this single center, triple blinded, and placebo-controlled trial, 96 patients were randomized for statistical analysis. The intervention group received oral duloxetine 30 mg once a day (OD) for 2 days before surgery, 60 mg OD from the day of surgery to the postoperative second day and 30 mg OD for the next 2 days (a total duration of 7 days). A placebo capsule was given in the other group for a similar time and schedule. The same standard perioperative analgesia protocols were followed in both groups. Results: Total morphine consumption up to 24 hours was significantly decreased in the duloxetine group (P < 0.01). The time to the first analgesia requirement was similar in both groups but the time to the second and third dose of rescue analgesia increased significantly in the duloxetine group. The time to ambulation was decreased significantly (P < 0.01) in the duloxetine group as compared to the placebo group. Pain scores remained similar during most of the time interval. No significant difference was observed in the complication rate and patient satisfaction score recorded. Conclusions: Duloxetine reduces postoperative pain after lumbar canal stenosis surgery with no increase in adverse effects.

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.28 no.1
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

A Review of Burning Mouth Disorders (구강작열감질환에 관한 고찰 및 의료분쟁 증례보고)

  • Hur, Yun-Kyung;Jung, Jae-Kwang;Choi, Jae-Kap
    • The Journal of the Korean dental association
    • /
    • v.48 no.9
    • /
    • pp.688-695
    • /
    • 2010
  • Burning mouth disorders (sometimes referred to as burning mouth syndrome) are characterized by a burning sensation in the tongue or other oral sites, usually in the absence of clinical and laboratory findings. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. Burning mouth complaints are reported more often in women, especially after menopause. Typically, patients awaken without pain, but report increasing symptoms through the day and into the evening. Conditions that have been reported in association with burning mouth syndrome include chronic anxiety or depression, various nutritional deficiencies, diabetes and changes in salivary function. However, these conditions have not been consistently linked with the syndrome, and their treatment has had little impact on burning mouth symptoms. Recent studies have pointed to dysfunction of several cranial nerves associated with taste sensation as a possible cause of burning mouth disorders. The most common central mechanism that likely explains burning mouth disorders is a centrally mediated continuous neuropathic pain. Given in low dosages, benzodiazepine, tricyclic antidepressants or anticonvulsants may be effective in patients with burning mouth disorders.

Opioids and Antidepressants for Pain Control in Musculoskeletal Disease (근골격계 질환에서 통증 조절을 위한 마약성 진통제 및 항우울제)

  • Park, Se-Jin;Kim, Woo Sub;Jang, Taedong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The progression of aging and the increase in musculoskeletal diseases have led to an increase in invasive treatment methods, including various surgical methods, but conservative treatment should be attempted before surgical treatment in musculoskeletal diseases. Medication for pain control, such as acetaminophen, non-steroidal anti-inflammatory drugs, steroid, opioids, antidepressants, etc., is one of the most popular methods for pain control. If the pain receptors on peripheral organ are stimulated, pain is transmitted to the brain by the ascending pathway, and the brain then secretes endogenous opioids, such as endorphin, by the descending pathway for pain control. Opioids are substances that act on the opioid receptors, and there are three receptors for opioids. The affinity for each receptor varies according to the tissue and the patient's systemic status. Antidepressants work on the synapses in the central nervous system and its main mechanism is regulation of the ascending pathway. This is mainly effective in chronic pain and neuropathic pain, which is similar in effectiveness to opioids. This review focuses on the effectiveness, method of use, and side effects of opioids and antidepressants.

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF