• Title/Summary/Keyword: Central Composite Design(CCD)

Search Result 164, Processing Time 0.028 seconds

Purification and Characterization of an Extracellular $\beta$-Glucosidase from Monascus purpureus

  • Daroit, Daniel J.;Simonetti, Aline;Hertz, Plinho F.;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.933-941
    • /
    • 2008
  • An extracellular $\beta$-glucosidase produced by Monascus purpureus NRRL1992 in submerged cultivation was purified by acetone precipitation, gel filtration, and hydrophobic interaction chromatography, resulting in a purification factor of 92-fold. A $2^2$ central-composite design (CCD) was performed to find the best temperature and pH conditions for enzyme activity. Maximum activity was observed in a wide range of temperature and pH values, with optimal conditions set at $50^{\circ}C$ and pH 5.5. The $\beta$-glucosidase showed moderate thermostability, was inhibited by $HgCl_2$, $K_2Cr_O_4$, and $K_2Cr_2O_7$, whereas other reagents including $\beta$-mercaptoethanol, SDS, and EDTA showed no effect. Activity was slightly stimulated by low concentrations of ethanol and methanol. Hydrolysis of p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), cellobiose, salicin, n-octyl-$\beta$-D-glucopyranoside, and maltose indicates that the $\beta$-glucosidase has broad substrate specificity. Apparently, glucosyl residues were removed from the nonreducing end of p-nitrophenyl-$\beta$-D-cellobiose. $\beta$-Glucosidase affinity and hydrolytic efficiency were higher for pNPG, followed by maltose and cellobiose. Glucose and cellobiose competitively inhibited pNPG hydrolysis.

Optimization of the Manufacturing Process for Mandarin Dry Chip Using Response Surface Methodology (RSM) (반응표면분석법을 이용한 감귤건조칩 제조조건 최적화)

  • Ra, Ha-Na;Park, Ga-Yeong;Kim, Ha-Yun;Cho, Yong-Sik;Kim, Kyung-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2019
  • The purpose of this study was to optimize the mandarin dry chip manufacturing using a response surface methodology. The experiment was designed based on a CCD (Central Composite Design), and the independent variables were the drying temperature ($X_1$, $50-90^{\circ}C$), drying time ($X_2$, 12-36 hours), and microwave pretreat time ($X_3$, 0-4 minutes). The results of appearance ($Y_5$), color ($Y_6$), taste ($Y_8$) and overall acceptance ($Y_{10}$) were fitted to the response surface methodology model ($R^2=0.86$, 0.88, 0.89, and 0.84, respectively). Increasing the drying temperature and microwave treatment time were negatively evaluated for consumer acceptance. On the other hand, a high value of consumer acceptance was evaluated when the drying time was more than 24 hr. Therefore, the optimal conditions of $X_1$, $X_2$, and $X_3$ were $52.989^{\circ}C$, 24 hr, and 1 min, respectively. Under these optimal conditions, the predicted values of $Y_5$, $Y_6$, $Y_8$, and $Y_{10}$ were 5.066, 5.338, 5.063, and 5.339, respectively.

Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology

  • Cao, Anh-Tuan;Nahar, Tahmina Tasnim;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.511-519
    • /
    • 2019
  • The concrete gravity dam is one of the most important parts of the nation's infrastructure. Besides the benefits, the dam also has some potentially catastrophic disasters related to the life of citizens directly. During the lifetime of service, some degradations in a dam may occur as consequences of operating conditions, environmental aspects and deterioration in materials from natural causes, especially from dynamic loads. Cumulative Absolute Velocity (CAV) plays a key role to assess the operational condition of a structure under seismic hazard. In previous researches, CAV is normally used in Nuclear Power Plant (NPP) fields, but there are no particular criteria or studies that have been made on dam structure. This paper presents a method to calculate the limitation of CAV for the Bohyeonsan Dam in Korea, where the critical Peak Ground Acceleration (PGA) is estimated from twelve sets of selected earthquakes based on High Confidence of Low Probability of Failure (HCLPF). HCLPF point denotes 5% damage probability with 95% confidence level in the fragility curve, and the corresponding PGA expresses the crucial acceleration of this dam. For determining the status of the dam, a 2D finite element model is simulated by ABAQUS. At first, the dam's parameters are optimized by the Minitab tool using the method of Central Composite Design (CCD) for increasing model reliability. Then the Response Surface Methodology (RSM) is used for updating the model and the optimization is implemented from the selected model parameters. Finally, the recorded response of the concrete gravity dam is compared against the results obtained from solving the numerical model for identifying the physical condition of the structure.

Qualitative and quantitative determination of oleanolic acid in a scalp tonic products by HPLC using response surface methodology for extraction optimization

  • Cai, Lin Xi;Cho, Chong Woon;Zhao, Yan;Kang, Jong Seong;Kim, Kyung Tae;Jung, Sang-Hun
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.48-55
    • /
    • 2019
  • The simple and effective analytical method for the quality control of a novel scalp tonic formulation has been developed and optimized in terms of HPLC conditions and sample preparation method, meanwhile, the optimization of preparation condition was using response surface methodology (RSM) based on central composite design (CCD). Oleanolic acid was selected as marker compound because of its bioactivities for alopecia therapy. The developed analytical method and extraction condition were successfully qualified. Coefficient of determination ($r^2$) for the calibration was 0.9997 with a line passing through the origin point in the range of 0.1-100 mg/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) were 17.5 ng/mL and 55.0 ng/mL, respectively. The intra-day and inter-day precision of the method were 0.5-1.4 % and 0.7-1.8 % in relative standard deviation, respectively, while those accuracy were 99.5-100.9 % and 100.0-102.2 %, respectively. The repeatability of oleanolic acid in samples ranged of 0.3-1.9 % based on peak area and 0.3-0.7 % for retention time. Recoveries from samples were 95.0-99.4 % with lower than 1.8 % in relative standard deviation. Overall, the developed analytical method will be used for quality control of this commercial scalp tonic products successfully.

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.

Optimization and Packed Bed Column Studies on Esterification of Glycerol to Synthesize Fuel Additives - Acetins

  • Britto, Pradima J;Kulkarni, Rajeswari M;Narula, Archna;Poonacha, Sunaina;Honnatagi, Rakshita;Shivanathan, Sneha;Wahab, Waasif
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.70-79
    • /
    • 2022
  • Biodiesel production has attracted attention as a sustainable source of fuel and is a competitive alternate to diesel engines. The glycerol that is produced as a by-product is generally discarded as waste and can be converted to green chemicals such as acetins to increase bio-diesel profitability. Acetins find application in fuel, food, pharmaceutical and leather industries. Batch experiments and analysis have been previously conducted for synthesis of acetins using glycerol esterification reaction aided by sulfated metal oxide catalysts (SO42-/CeO2-ZrO2). The aim of this study was to optimize process parameters: effects of mole ratio of reactants (glycerol and acetic acid), catalyst concentration and reaction temperature to maximize glycerol conversion/acetin selectivity. The optimum conditions for this reaction were determined using response surface methodology (RSM) designed as per a five-level-three-factor central composite design (CCD). Statistica software 10 was used to analyze the experimental data obtained. The optimized conditions obtained were molar ratio - 1:12, catalyst concentration - 6 wt.% and temperature -90 ℃. A packed bed reactor was fabricated and column studies were performed using the optimized conditions. The breakthrough curve was analyzed.

The Optimization of Muffin with Yam Powder Using Response Surface Methodology (마분말 첨가 머핀 제조조건 최적화)

  • Joo, Na-Mi;Lee, Sun-Mee;Jeong, Hee-Sun;Park, Sang-Hyun;Jung, Ah-Ram;Ryu, Seung-Yeon;Lee, Ji-Hee;Jung, Hyeon-A
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.2
    • /
    • pp.243-251
    • /
    • 2008
  • This purpose of this study was to develop a functional muffin by adding yam powder in the shape of a muffin as a partial surrogate for wheat flour. The yam has been found to be effective for liver and kidney function, as well as the digestion of protein, since it produces glucuronic acid in the body. Therefore, the purpose of this study was to determine the optimal mixing conditions of yam muffins by adjusting the amounts yam powder, butter, and sugar. The mixing conditions for the yam muffins included 3 categories: yam powder $(X_1)$, sugar $(X_2)$, and butter $(X_3)$ by Central Composite Design (CCD) which was optimized by Response Surface Methodology (RSM). The effects of the three variable additions on muffin quality were examined via physical and chemical experiments, such as the analysis of texture (hardness, cohesiveness, springiness, gumminess), coloration (lightness, redness, yellowness), and height. Lastly, we performed a sensory test, which revealed significant findings for gumminess, color, appearance, flavor, softness (p<0.05), redness, and overall quality (p<0.01). Consequently, the optimal mixing rate which best satisfied the sensory items were 34.35g of yam powder, 80.15 g of sugar, and 80.55 g of butter.

Lipase Production by Limtongozyma siamensis, a Novel Lipase Producer and Lipid Accumulating Yeast

  • Varunya Sakpuntoon;Savitree Limtong;Nantana Srisuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1531-1541
    • /
    • 2023
  • Lipase is a well-known and highly in-demand enzyme. During the last decade, several lipase optimization studies have been reported. However, production costs have always been a bottleneck for commercial-scale microbial enzyme production. This research aimed to optimize the conditions for lipase production by Limtongozyma siamensis DMKU-WBL1-3 via a One-Factor-At-a-Time (OFAT) approach combined with statistical methods while using a low-cost substrate. Results suggest that low-cost substrates can be substituted for all media components. An optimal medium was found, using response surface methodology (RSM) and central composite design (CCD), to consist of 0.50% (w/v) sweet whey, 0.40% (w/v) yeast extract (food grade), and 2.50% (v/v) palm oil with the medium pH adjusted to 4 under shaking flask cultivation. From an economic point of view, this work was successful in reducing production costs while increasing lipase productivity. The medium costs were reduced by 87.5% of the original cost while lipase activity was increased by nearly 6-fold. Moreover, lipase production was further studied in a 2-L stirred-tank fermentor. Its activity was 1,055.6 ± 0.0 U/ml when aeration and agitation rates were adjusted to 1 vvm and 170 rpm, respectively. Interestingly, under this optimal lipase production, the yeast showed accumulated lipids inside the cells. The primary fatty acid is a monounsaturated fatty acid (MUFA) that is typically linked to health benefits. This study hence reveals promising lipase production and lipid accumulation by L. siamensis DMKU-WBL1-3 that are worthy of further study.

Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology (반응 표면 분석법을 사용한 Bacillus subtilis NC1 유래 cellulase 생산 배지 최적화)

  • Yang, Hee-Jong;Park, Chang-Su;Yang, Ho-Yeon;Jeong, Su-Ji;Jeong, Seong-Yeop;Jeong, Do-Youn;Kang, Dae-Ook;Moon, Ja-Young;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.680-685
    • /
    • 2015
  • Previously, cellulase and xylanase producing microorganism, Bacillus subtilis NC1, was isolated from soil. Based on the 16S rRNA gene sequence and API 50 CHL test the strain was identified as Bacillus subtilis, and named as B. subtilis NC1. We cloned and sequenced the genes for cellulase and xylanase. Plus, the deduced amino acid sequences from the genes of cellulase and xylanase were determined and were also identified as glycosyl hydrolases family (GH) 5 and 30, respectively. In this study to optimize the medium parameters for cellulase production by B. subtilis NC1 the RSM (response surface methodology) based on CCD (central composite design) model was performed. Three factors, tryptone, yeast extract, and NaCl, for N or C source were investigated. The cellulase activity was measured with a carboxylmethyl cellulose (CMC) plate and the 3,5-dinitrosalicylic acid (DNS) methods. The coefficient of determination (R2) for the model was 0.960, and the probability value (p=0.0001) of the regression model was highly significant. Based on the RSM, the optimum conditions for cellulase production by B. subtilis NC1 were predicted to be tryptone of 2.5%, yeast extract of 0.5%, and NaCl of 1.0%. Through the model verification, cellulase activity of Bacillus subtilis NC1 increased from 0.5 to 0.62 U/ml (24%) compared to the original medium.

Antibacterial Properties of Extracts from Abies holophyllaand Pinus koraiensisNeedles Against Escherichia coli and Staphylococcus aureus (전나무와 잣나무 잎 추출물의 대장균과 황색포도상구균에 대한 항균특성)

  • Young Woo Choi;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.248-254
    • /
    • 2024
  • In this study, functional substances with antibacterial properties were extracted from the needles of Abies holophylla and Pinus koraiensis, and optimized using the central composite design-response surface methodology (CCD-RSM). The optimal extraction conditions for Abies holophylla were an extraction temperature of 59.5 ℃ and an ethanol/ultrapure water volume ratio of 69.5 vol.%, resulting in an extraction yield of 13.5% and inhibition diameters of 11.6 mm against Escherichia coli (E. coli) and 9.3 mm against Staphylococcus aureus (S. aureus). For Pinus koraiensis, the optimal extraction conditions were an extraction temperature of 59.2 ℃ and an ethanol/ultrapure water volume ratio of 67.8 vol.%, resulting in an extraction yield of 4.8% and inhibition diameters of 7.9 mm against E. coli and 12.5 mm against S. aureus. The actual experimental results under these optimal conditions showed that an extraction yield from Abies holophylla needles was 13.0% and an inhibition diameter of 11.7 mm against E. coli and 9.2 mm against S. aureus, indicating an error rate of approximately ± 2.3%. For Pinus koraiensis needles, the extraction yield was 5.1%, with inhibition diameters of 7.5 mm against E. coli and 12.3 mm against S. aureus, indicating an error rate of ± 4.23%.