• Title/Summary/Keyword: Centerline velocity

Search Result 99, Processing Time 0.024 seconds

Experimental and CFD Simulations of Polluted Air Behavior in Rectangular Tunnels

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.608-615
    • /
    • 2011
  • The objective of this study is to investigate the flow characteristics of polluted air behavior in rectangular tunnels using a PIV system and a commercial CFD program. The PIV experiments are simulated by using the olive oil as the tracer particles in scaled rectangular tunnels. Each model has one of four different outlet vents, each dimensionless L/H ratio of which is 0, 0.375, 0.75 and 1.125, respectively as the locations of each outlet are away from the vertical centerline through the inlet. A commercial CFD program, ANSYS CFX, was used to examine the velocity fields and the pressure distributions in numerical simulations. The kinematic viscosity of the air flow of $1.51{\times}10^{-5}m^2/s$ and the flow velocity of 0.3 m/s at the inlet are given under the same conditions in order to analyze the polluted air flow characteristics experimentally and computationally. This study is considered to examine the effect of the outlet locations in the naturally ventilated tunnel models.

ANALYSIS OF VELOCITY STRUCTURE OF WALL JET ORIGINATING FROM CIRCULAR ORIFICES IN SHALLOW WATER

  • Kim, Dae-Geun;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.235-245
    • /
    • 2002
  • In this study, breakwater model which has several outlet pipes to discharge water is settled in the experimental open channel and mean velocity distributions of multi wall jet are measured. The length of flow of flow establishment of wall jet is shorter than that of free jet and decay rate of jet centerline longitudinal velocity along x is linear in 0.3 $\leq$ x/$\l_q$ $\leq$ 17. The rate of vertical width and lateral width spreading of multi wall jet is respectively 0.0753, 0.157~0.190.

  • PDF

The Relation between Lamb Wave Velocity and Direction in the Anisotropic materials (이방성 복합재료에서 방향과 램파의 속도와의 관계)

  • Rhee, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.559-562
    • /
    • 2010
  • A Lamb wave guided by a plate structure has dispersive characteristics because phase and group velocity change with the variation of frequency and thickness. The Lamb wave has two modes, symmetric and anti-symmetric mode, which propagated symmetrically and non-symmetrically with respect to centerline. In this paper, the Lamb wave velocity variation with respect to direction is investigated.

  • PDF

Velocity Structure of Wall Jet Originating from Circular Orifices in Shallow Water (천해역에 방류되는 원형 다공바닥젵의 유속구조)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1039-1044
    • /
    • 2002
  • In this study, breakwater model which has several outlet pipes to discharge water is settled in the experimental open channel and mean velocity distributions of multi wall jet are measured. The length of zone of flow establishment of wall jet is shorter than that of free jet and decay rate of jet centerline longitudinal velocity along x is linear in $0.3{leq}x/I_p{leq}17$. The rate of vertical width and lateral width spreading of multi wall jet is respectively 0.0753, 0.157.

Flow Dynamics of Gas Turbine Swirl Nozzle

  • Moriai, Hideki;Fujimoto, Yohei;Miyake, Yoshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.63-65
    • /
    • 2008
  • CFD cold-flow analysis results of the air-blast swirl nozzle for the small aircraft engine combustor are shown. Two major recirculation zones are observed near the nozzle. The centerline recirculation zone velocity profile of CFD is compared with the experimental results.

  • PDF

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape (S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석)

  • Jin, Juneyub;Park, Youngseok;Kim, Jaewon;Lee, Changwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.42-55
    • /
    • 2021
  • In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

MIGRATION OF ELASTIC CAPSULE IN A CHANNEL FLOW (채널 유동 내 유연한 캡슐 움직임에 대한 수치해석)

  • Shin, S.J.;Sung, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.504-507
    • /
    • 2011
  • The inertial migration of a two-dimensional elastic capsule in a channel flow was studied over the Reynolds number range $1{\leq}Re{\leq}100$. The lateral migration velocity, slip velocity, and the deformation and inclination angle of the capsule were investigated by varying the lateral position, Reynolds number, capsule-to-channel size ratio(${\lambda}$), membrane stretching coefficient(${\Phi}$), and membrane bending coefficient(${\gamma}$). During the initial transient motion, the lateral migration velocity increased with increasing Re and ${\lambda}$ but decreased with increases in ${\Phi}$, ${\gamma}$ and the lateral distance from the wall. The initial behavior of the capsule was influenced by variation in the initial lateral position ($y_0$), but the equilibrium position of the capsule was not affected by such variation. The balance between the wall effect and the shear gradient effect determined the equilibrium position. As Re increased, the equilibrium position initially shifted closer to the wall and then moved towards the channel center. A peak in the equilibrium position was observed near Re=30 for ${\gamma}=0.1$, and the peak shifted to higher Re as ${\gamma}$ increased. Depending on the lateral migration velocity, the equilibrium position moved toward the centerline for larger ${\gamma}$ but moved toward the wall for larger ${\Phi}$ and ${\gamma}$.

  • PDF

Gas phase temperature profile measurement of an upflow OMVPE reactor by laser Raman spectroscopy (레이저 라만 분광법을 이용한 도립형 OMVPE 반응기의 기상 온도 분포 측정)

  • ;Timothy J. Anderson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.448-453
    • /
    • 1998
  • An inverted, stagnation point flow OMVPE reactor was studied by laser Raman spectroscopy. Pure rotational Raman scattering by the carrier gas $(N_2; or; H_2)$ was used to determine the axial centerline temperature profile in the reactor as a function of the inlet flow velocity and the rector aspect ratio. A larger temperature gradient normal to the susceptor surface was obtained with higher gas glow velocity, larger aspect ratio, and the use of a $N_2$ carrier gas.

  • PDF