• Title/Summary/Keyword: Center-cut blasting

Search Result 15, Processing Time 0.02 seconds

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

The Circular Center Cut with Large Empty Hole & Pre-Splitting in Tunnel Blasting (터널에서 대구경 무장약공과 선균열을 이용한 심빼기 공법에 관한 연구)

  • 김재홍;임한욱
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2001
  • The cylindrical cut is most frequently used in tunnel blast regardless of their dimensions. In this study the new parallel cut is proposed to raise advance per round, which is considered to be an elevation of the traditional cylinder cuts. The general geometric pattern of a new cut with parallel blast holes is proposed. The detailed burden and spacing between the central blasthole and those of the four section are also given. The blast results between new cut and traditional cylinder cut are given. The main results of this study are as follows. 1) The average advances per rounds in new cuts can reach 99.5% of drilling length. That of traditional cylinder cuts are known approximately 90∼95% 2) Specific charge weight of new cut compare to that of cylinder cut is approximately reduced 5% from 1.363 to 1.297 kg/㎥ 3) Specific drilling rate is also reduced 8% from 2.393 to 2.130 m/㎥ 4) Vibrations, fly rock, and fragmentation produced by the new blast are to be proved superior to those of the traditional cylinder cuts.

  • PDF

A Study on the Behavior of an Existing Tunnel and the Safety Implications on its Facilities from a New Tunnel Blasting (신설 터널 발파 시 기존 터널 거동 및 시설물 안전에 관한 연구)

  • Kim, Sung Hoon;Cho, Woncheol
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 2010
  • In this study, the behavior and safety of an existing tunnel and its facilities are investigated when a new tunnel adjacent to the existing tunnel is blasted. The design of the new tunnel puts priority on stability of the tunnel itself over the safety of the facilities which are installed within the existing tunnel such as jet fans. And thus, a detailed consideration on securing the safety of the existing facilities has been insufficient. An analysis on the types of traffic accidents in the last ten years shows that most incidents were due to the driver's improper response in emergency situations and unexpected obstacles. In consideration of this analysis, the safety of the facilities in the existing tunnel was secured by minimizing the charging amount for each hangfire and changing the excavation method of evacuation communication shelters to the large center hole cut blasting method to reduce blasting vibration. For a more quantitative analysis, measurement devices were installed inside the existing tunnel, at houses adjacent to the new tunnel, near jet fans in the existing tunnel. This enabled real time measurement of displacements of the existing tunnel, adjacent houses, and jet fans without interrupting traffic flow. Therefore, the improvements of charging amount for each hangfire, the blasting method, and the measurement method are suggested in this paper to secure the safety of the facilities in the existing tunnel when a new tunnel, located on a large city and adjacent to an existing tunnel, is designed.

  • PDF

A Study on Assessment of Advance and Overbreak in Underground Excavation Utilizing 3D Scanner (3D 스캐너를 이용한 지하공동의 굴진장 및 여굴 평가 기초연구)

  • Noh, You-Song;Kim, Jung-Kyu;Ko, Young-Hun;Kim, Seong-Jun;Chung, So-Keul;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Abstract This study is to efficiently calculate and evaluate the elements of advance, overbreak and underbreak on the mine under the production using the 3D laser scanner. For this purpose, a 3D laser scanner was sued to acquire the point-cloud which records the space coordinates and modelling of the underground tunnel using the 3D modeling program. When each element was observed through the study result, the advance on the center cut was 2.6m in average while the total advance was 2.4m. If the drilling length of 3.8m is based, the advance rate was evaluated to be 67% in average in the center cut section with the total average of 64%. In addition, when the volume of overbreak was measured based on the design cross section, the average overbreak volume was found to be $4.5m^3$ on left wall, $4.5m^3$ on right wall, and $5m^3$ on roof with the total volume of $14m^3$. When the overbreak volume is measured based on the look-out cross section, it was $3m^3$ on roof with the total volume of $8.4m^3$. The rate of overbreak volume against the average excavation volume was 8% based on the design cross section and 5% based on the look-out cross section.

A Study on the Optimal Setting of Large Uncharged Hole Boring Machine for Reducing Blast-induced Vibration Using Deep Learning (터널 발파 진동 저감을 위한 대구경 무장약공 천공 장비의 최적 세팅조건 산정을 위한 딥러닝 적용에 관한 연구)

  • Kim, Min-Seong;Lee, Je-Kyum;Choi, Yo-Hyun;Kim, Seon-Hong;Jeong, Keon-Woong;Kim, Ki-Lim;Lee, Sean Seungwon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • Multi-setting smart-investigation of the ground and large uncharged hole boring (MSP) method to reduce the blast-induced vibration in a tunnel excavation is carried out over 50m of long-distance boring in a horizontal direction and thus has been accompanied by deviations in boring alignment because of the heavy and one-directional rotation of the rod. Therefore, the deviation has been adjusted through the boring machine's variable setting rely on the previous construction records and expert's experience. However, the geological characteristics, machine conditions, and inexperienced workers have caused significant deviation from the target alignment. The excessive deviation from the boring target may cause a delay in the construction schedule and economic losses. A deep learning-based prediction model has been developed to discover an ideal initial setting of the MSP machine. Dropout, early stopping, pre-training techniques have been employed to prevent overfitting in the training phase and, significantly improved the prediction results. These results showed the high possibility of developing the model to suggest the boring machine's optimum initial setting. We expect that optimized setting guidelines can be further developed through the continuous addition of the data and the additional consideration of the other factors.