• 제목/요약/키워드: Center Pixel

검색결과 425건 처리시간 0.026초

악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발 (Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware)

  • 박지현;김태옥;신유림;김지연;최은정
    • 한국멀티미디어학회논문지
    • /
    • 제23권5호
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

Machine Vision Technique for Rapid Measurement of Soybean Seed Vigor

  • Lee, Hoonsoo;Huy, Tran Quoc;Park, Eunsoo;Bae, Hyung-Jin;Baek, Insuck;Kim, Moon S.;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제42권3호
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: Morphological properties of soybean roots are important indicators of the vigor of the seed, which determines the survival rate of the seedlings grown. The current vigor test for soybean seeds is manual measurement with the human eye. This study describes an application of a machine vision technique for rapid measurement of soybean seed vigor to replace the time-consuming and labor-intensive conventional method. Methods: A CCD camera was used to obtain color images of seeds during germination. Image processing techniques were used to obtain root segmentation. The various morphological parameters, such as primary root length, total root length, total surface area, average diameter, and branching points of roots were calculated from a root skeleton image using a customized pixel-based image processing algorithm. Results: The measurement accuracy of the machine vision system ranged from 92.6% to 98.8%, with accuracies of 96.2% for primary root length and 96.4% for total root length, compared to manual measurement. The correlation coefficient for each measurement was 0.999 with a standard error of prediction of 1.16 mm for primary root length and 0.97 mm for total root length. Conclusions: The developed machine vision system showed good performance for the morphological measurement of soybean roots. This image analysis algorithm, combined with a simple color camera, can be used as an alternative to the conventional seed vigor test method.

차선관련 파라미터의 대칭성과 선형회귀에 기반한 차선이탈 인식 (A Lane-Departure Identification Based on Linear Regression and Symmetry of Lane-Related Parameters)

  • 이운근;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.435-444
    • /
    • 2005
  • This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.

다종 위성 자료를 활용한 해수면온도(SST) 합성기법 개발 연구 (Study on Merging Method of SSTs Using Multi-satellite Data)

  • 오은경;양찬수
    • 해양환경안전학회지
    • /
    • 제17권3호
    • /
    • pp.197-202
    • /
    • 2011
  • 본 연구는 다종 위성 자료를 활용한 해수면온도 합성 기법에 대한 연구이다. 현재 많은 연구자들이 사용하고 있는 NGSST 알고리듬은 위성에 따른 정확도를 고려하지 않고 시 공간 상관도만을 계산하여 해당 픽셀의 값을 추정한다. 본 연구에서는 위성 센서별로 가지고 있는 정확도를 추가로 고려한 해수면온도 합성기법을 제안하고 기존 알고리듬과의 비교를 수행하였다. 합성장을 산출하는데 사용된 센서는 적외 센서인 MODIS, AVHRR 그리고 마이크로파 센서인 AMSR-E를 사용하였고, 2011년 4월 4일을 기준으로 5 km의 공간해상도를 갖는 일일 해수면 온도 합성장을 비교하였다. 부이와의 비교 결과, 기존 방법(NGSST Method)과 제안 방법(New Method)에 의한 표준편차는 각각 $0.15^{\circ}C$$0.12^{\circ}C$이었다. 또한 기존 방법보다 제안 방법에 의한 해수면온도 값은 연안을 제외한 대부분의 해역에서 다소 높게 산출이 되었다. 현 단계에서 정량적인 평가는 어렵지만, 본 연구를 통하여 해수면온도 합성기법에 대한 연구 방향이 제시되었다고 판단된다.

구형물체의 중심좌표를 이용한 VLP-16 라이다 센서와 비전 카메라 사이의 보정 (Calibration of VLP-16 Lidar Sensor and Vision Cameras Using the Center Coordinates of a Spherical Object)

  • 이주환;이근모;박순용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권2호
    • /
    • pp.89-96
    • /
    • 2019
  • 전방향 3차원 라이다 센서와 비전 카메라는 자동차나 드론 등의 자율주행기술 개발에 활용되고 있다. 한편 라이다 센서와 카메라 좌표계 사이의 변환 관계를 보정하기 위한 기존의 기술들은 특수한 보정물체를 제작하거나 보정물체의 크기가 큰 단점이 있다. 본 논문에서는 한 개의 구형물체를 사용하여 두 센서 사이의 기하보정을 간편하게 구현하는 방법을 소개한다. 구형 물체의 3차원 거리정보에서 RANSAC으로 네 개의 3차원 점을 선택하여 구의 중심좌표를 계산하고, 카메라 영상에서 물체의 2차원 중심점을 구하여 두 센서를 보정하였다. 구는 다양한 각도에서 영상을 획득하여도 항상 원형의 형상을 유지하기 때문에 데이터 획득 시 유리한 장점이 있다. 본 논문에서 제안하는 방법으로 약 2픽셀의 투영오차의 결과를 얻었고, 기존의 방법과의 비교실험을 통하여 제안 기술의 성능을 분석하였다.

CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발 (Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber)

  • 변종윤;전창현;김현준;이재준;박헌일;이진욱
    • 한국수자원학회논문집
    • /
    • 제56권6호
    • /
    • pp.403-417
    • /
    • 2023
  • 본 연구에서는 CCTV 영상 기반 강우강도 산정 시 필수적으로 요구되는 적정 강우 이미지 DB를 구축하기 위한 방법론을 개발하였다. 먼저, 실환경에서 불규칙적이고 높은 변동성을 보일 수 있는 변수들(바람으로 인한 빗줄기의 변동성, 녹화 환경에서 포함되는 움직이는 객체, 렌즈 위의 흐림 현상 등)에 대한 통제가 가능한 한국건설생활환경시험연구원 내 기후환경시험실에서 CCTV 영상 DB를 구축하였다. 서로 다른 5개의 실험 조건을 고려하여 이상적 환경에서 총 1,728개의 시나리오를 구성하였다. 본 연구에서는 1,920×1,080 사이즈의 30 fps (frame per second) 영상 36개에 대하여 프레임 분할을 진행하였으며, 총 97,200개의 이미지를 사용하였다. 이후, k-최근접 이웃 알고리즘을 기반으로 산정된 최종 배경과 각 이미지와의 차이를 계산하여 빗줄기 이미지를 분리하였다. 과적합 방지를 위해 각 이미지에 대한 평균 픽셀 값을 계산하고, 설정한 픽셀 임계치보다 큰 자료를 선별하였다. 180×180 사이즈로의 재구성을 위해서 관심영역을 설정하고 10 Pixel 단위로 이동을 진행하여 픽셀 변동성이 최대가 되는 영역을 산정하였다. 합성곱 신경망 모델의 훈련을 위해서 120×120 사이즈로 재변환하고 과적합 방지를 위해 이미지 증강 과정을 거쳤다. 그 결과, 이미지 기반 강우 강도 합성곱 신경망 모델을 통해 산정된 결과값과 우량계에서 취득된 강우자료가 전반적으로 유사한 양상을 보였으며, 모든 강우강도 실험 조건에 대해서 약 92%의 데이터의 PBIAS (percent bias)가 절댓값 범위 10% 이내에 해당하였다. 본 연구의 결과물과 전이학습 등의 방법을 연계하여 기존 실환경 CCTV의 한계점을 개선할 수 있을 것으로 기대된다.

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • 박민수;김호성;양현덕;송진동;김상혁;윤예슬;최원준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF

[I-123]IPT SPECT를 이용한 도파민 재섭취부위의 영상화: 반정성적 분석방법을 이용한 정상인과 파킨슨병 환자의 차이 ([I-123]IPT SPECT Dopamine Reuptake Site Imaging: Differences in Normal Controls and Parkinson's Patients by Semiquantitative Analysis Methods)

  • 김희중;임주혁;양승오;류진숙;최윤영;이명종;이희경
    • 대한핵의학회지
    • /
    • 제30권1호
    • /
    • pp.35-46
    • /
    • 1996
  • Dopamine transporter concentrations have been known to decrease in Parkinson's disease (PD) or increase in Tourette's disorder. The purpose of this study was to evaluate the effectiveness of [I-123]N-(3-iodopropene-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-chlorophenyl) tropane (IPT) as an imaging agent for measuring changes in transporter concentrations with PD. IPT labelled with 6.69+/-0.64 mCi(247.53+/-23.68 MBq) of I-123 was intravenously injected into ten patients(age: 55+/-11) with PD, and six normal controls(NC)(age: 46+/-14) as a bolus. Dynamic SPECT scans of the brain were then performed for 5 minutes each over 120 minutes on a triple headed camera. Time activity curves were generated for the left basal ganglia(LBG), right basal ganglia(RBC), and occipital cortex(OCC). The statistical parameters included the time to peak activity, the contrast ratio of LBG and RBG to OCC at several time points, and the accumulated specific binding counts/mCi/pixel(ASBC) from 0 to 115 minutes. The uptake of IPT in the brains of PD and NC peaked within 10 minutes of injection in all subjects. The maximum target to background ratio in the basal ganglia of PD and NC occurred at 85+/-20 min and 110+/-6 min of injection, respectively. The BG/OCC ratios at 115 minutes for PD and NC were 2.15+/-0.54 and 4.26+/-0.73, respectively. The ASBC at 115 minutes for PD and NC were 152.91+/-50.09 and 289.51+/-49.00, respectively. The ratio of BG/OCC for the NC was significantly higher than the ratio for PD. SPECT data matched with clinical diagnosis for PDs. The ratio between BG and OCC and the ASBC for PD were clearly separated from NC and may be useful outcome measures for clinical diagnosis. The findings suggest that IPT may be a very useful tracer for early diagnosis of PD and study of dopamine reuptake site.

  • PDF

자동현상기 지능화에 필요한 연산처리 기법의 개발을 위한 방사선 필름의 영상 지수의 분석 (Analysis of Image Factors of X-ray Films: Study for the Intelligent Replenishment System of Automatic Film Processor)

  • 박성태;윤종현;박광보;오용호;이형진;인경환;김건중
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제21권1호
    • /
    • pp.35-39
    • /
    • 1998
  • We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.

  • PDF

딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석 (Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm)

  • 허재원;이창희;서두천;오재홍;이창노;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.387-396
    • /
    • 2024
  • 대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.