• 제목/요약/키워드: Cement treated materials

검색결과 133건 처리시간 0.027초

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Stabilization of cement-soil utilizing microbially induced carbonate precipitation

  • Shuang Li;Ming Huang;Mingjuan Cui;Peng Lin;Liudi Xu;Kai Xu
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.95-108
    • /
    • 2023
  • Soft soil ground is a crucial factor limiting the development of the construction of transportation infrastructure in coastal areas. Soft soil is characterized by low strength, low permeability and high compressibility. However, the ordinary treatment method uses Portland cement to solidify the soft soil, which has low early strength and requires a long curing time. Microbially induced carbonate precipitation (MICP) is an emerging method to address geo-environmental problems associated with geotechnical materials. In this study, a method of bio-cementitious mortars consisting of MICP and cement was proposed to stabilize the soft soil. A series of laboratory tests were conducted on MICP-treated and cement-MICP-treated (C-MICP-treated) soft soils to improve mechanical properties. Microscale observations were also undertaken to reveal the underlying mechanism of cement-soil treated by MICP. The results showed that cohesion and internal friction angles of MICP-treated soft soil were greater than those of remolded soft soil. The UCS, elastic modulus and toughness of C-MICP-treated soft soil with high moisture content (50%, 60%, 70%, 80%) were improved compared to traditional cement-soil. A remarkable difference was observed that the MICP process mainly played a role in the early curing stage (i.e., within 14 days) while cement hydration continued during the whole process. Micro-characterization revealed that the calcium carbonate filling the pores enhanced the soft soil.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

해외시멘트를 사용한 콘크리트의 고강도 및 중성화 특성 (Properties of High-strength and Carbonation of Concrete with Overseas Cement)

  • 이성복;하부도언;이도헌;지남용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.237-242
    • /
    • 2000
  • Recently, the importation of overseas cement has been increasing and the spot materials of different quality from Japan have to be treated in overseas construction work for technical cooperation with neighboring countries. However, a study on the quality of those oversea materials has not yet been carried out systematically, especially cement among those materials. Accordingly, in this study the properties of high-strength concrete with oversea cement imported from four countries in East Asia and South-east Asia were investigated under normal and high temperature condition, including the carbonation of normal-strength concrete under normal temperature. As a result, it is found that the required of normal-strength concrete will be expected regardless of temperature condition when the flowability is ensured by selecting the appropriate superplaticizer and dosage of it, and the carbonation rate of normal-strength concrete with overseas cement is approximately the same as that with Japanese one under the condition of the same compressive strength.

  • PDF

철도교대 뒤채움재료의 시멘트 혼합 비율에 따른 강도 및 침하특성 분석 (Analysis of Settlement Characteristics and Strength of Cement Mixing Ratio for a Backfill Material at a Railway Abutment)

  • 양상범;최찬용;김낙경;김태균
    • 한국지반공학회논문집
    • /
    • 제32권9호
    • /
    • pp.29-36
    • /
    • 2016
  • 국내 철도교대 뒤채움재의 구조는 시멘트 안정처리된 골재, 일반 골재, 토사로 되어 있다. 시멘트 안정처리된 골재는 강도 증진효과로 인해 내부마찰각이 $40^{\circ}$이상 증가 된다. 그러나 실무에서는 교대설계 시 경험치인 $30{\sim}35^{\circ}$의 내부마찰각을 적용한다. 이는 과다설계의 원인이 될 수 있으므로 합리적인 물성치 값의 설정이 필요하다. 본 논문은 원형모형 실험과 CBR 실험을 통해 시멘트 안정처리된 골재의 시멘트 혼합 비율에 따른 강도 및 침하특성을 정량적으로 분석하였다. 시멘트 안정처리된 골재의 침하율은 반복재하 함에 따라 감소하였다. 또한 양생함에 따라 침하량이 감소하였다. 재령 28일 기준으로 일반골재 대비 시멘트 안정처리된 골재의 CBR 증가율은 13~16배 증가하였다.

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.

자화수를 사용한 주입재의 공학적 특성에 관한 연구 (A Study on the Engineering Properties of Grout Materials Using a Magnetic Field Treated Water)

  • 천병식;박두희;양형칠;정종주;이상영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1195-1203
    • /
    • 2006
  • Water that is treated by passing through a magnetic field of certain strength is called Magnetic Field Treated Water(MFTW). Previous research indicate that use of MFTW can save 5% of cement dosage, decrease bleeding of concrete, and improve resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by the molecular structure of water. Magnetic force can break apart water clusters into single molecules or smaller ones, therefore, the activity of water is improved. While hydration of cement particles is in progress, the MFTW can penetrate the core region of cement particles more easily. Hence, hydration takes place more efficiently which in turn improves concrete compressive strength. Test results demonstrate that the compressive strength of the sodium silicate cement grout homogel increases by approximately 20 - 50% by using the MFTW.

  • PDF

Application of Bacillus subtilis 168 as a Multifunctional Agent for Improvement of the Durability of Cement Mortar

  • Park, Sung-Jin;Park, Jong-Myong;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1568-1574
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.