• Title/Summary/Keyword: Cement paste

Search Result 754, Processing Time 0.024 seconds

Multi-level Analysis of Prefinitely Strainely concrete materials (대변형률이 발생한 콘크리트 재료의 다수준 해석)

  • 최재혁;송하원;김장호;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.405-410
    • /
    • 2000
  • Multi-level (macro-level, meso-level, and micro-level) mechanism of prefinitely strained concrete materials os studied The multi-level analysis explains the additional quasibrittle concrete material ductility that comes from lateral confinement and their multi-level interaction mechanisms. The so-called "upgraded tube-squash test" is used to achieve 50% axial strain and over 70 degree of deviatoric strain of quasibrittle concrete materials under extremely high pressure without producing visible cracks. In the micro-level analysis, the variations of hydration rte, micropores, and hydrate phased are analyzed. In the meso-level analysis, mesocracks (the initial invisible cracks) at the interfaces between aggregates and cement paste matrices are studied. The high confining effect in the specimen on the meso-level cracks is also studied. In the macro-level analysis, the physical behavior of prefinitely strained concrete materials is studied. The co-relationships of the results from the three distinct levels of analyses based in various prestraining (0%, 15%, 35%, and 50%) are studied. For the extremely deformed or strained concrete problems, multi-level analysis will be used to explain the unclear and unstudied mechanism of concrete materials, The multi-level analysis can provide us with valuable insights that can explain the additional ductility and confining effect in concrete. concrete.

  • PDF

Influence of the Improveal Grain Shape of Coarse Aggregates on Compactability of High Performance Concrete (굵은 골재 입형 개선이 고성능콘크리트의 충전특성에 미치는 영향)

  • 이승한;김희중;정용욱
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.103-111
    • /
    • 2000
  • The influence of the improvement of grain shape of the coarse aggregate to the unit powder content of concrete and the fine aggregate ratio for the increase of the flowability and segregation resistance of high performance concrete was examined. According to the experimental results, flowability and compacting of concrete presents best states in the S/a which has the smallest 패야 ratio. The coarse aggregate after improvement of grain shape, that has changed from the 0.68 of spherical rate of disk shape to 0.73, led fine aggregate ratio to be down 6% (i.e from 47% to 41%). The improvement of grain shape of the coarse aggregate also led the lowest unit powder content to be down 60kg/㎥ (ie from 530kg/㎥ to 470kg/㎥). And approximate 10% of unit water content has been reduced as unit powder content was down. However, the compressive strength after the improvement of grain shape of the coarse aggregate decreased to 5% due to decrease of adhesiveness of the aggregate and cement paste.

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

Study on the Properties of Porous Concrete According to the Aggregate Shape and Size (골재 입형 및 크기에 따른 포러스 콘크리트의 특성에 관한 연구)

  • Lim, Seo-Hyung;Kang, Hyun-Sik;Jee, Nam-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 2005
  • The purpose of this study is to investigate the physical properties of porous concrete according to the aggregate shape and size which is produced by con crusher and impact crusher. For this purpose, the selected test variables were the aggregate size and shape, the ratio of water to cement and the ratio of paste to aggregate. The results of this study showed that its economic performance and physical properties were improved using the aggregate made by impact crusher. The coefficient of permeability and compressive strength of porous concrete had a close correlationship with the void ratio, and it was suggested as a function of void ratio.

An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating (고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Tae-Gyu;Sin, Seung-Bong;Kim, Young-Sun;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

An Experimental Study on the Resistance of Concrete Included Rice Husk Ash Against Rapid Freezing and Thawing (왕겨재를 혼입한 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • 이준구;박광수;이응찬;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.294-300
    • /
    • 1999
  • After researching the physical properties of the concrete included Rice Husk Ash(RHA concrete) and workability of fresh concrete admixed RHA, we have tested durability of RHA-concrete against freeaing and thawing in the winter using rapid freezing and thawing test method(KS F 2456) . There aretwo hypotheses to explain the failure mechanism of a freezing and thawing action. First, the hydraulic pressure in the pores of freezing concrete make an internal stress of concrete structures outbreaking micro crack in the face of concrete, Second, Frost action causing damage to cement paste repeatedly come from soil frost action, freezing water in the capillaries. Initial Relative Dynamic Modulus of Elasticity (DME) was biggest in cae of unit binder weight 600kgf/㎥ and relative dynamic modulus of elasticity increased until 300cycles. In general , initial relative DME was proportional to unit binder weight . Relative DME was decreased in proportion to unit binder weight in the case of 300, 400, 500kgf/㎥ , but relative DME fo the others remained more than 90% until 300 cycles. It was not good effect of intermixed RHA to concrete in case of below unit binder weight 300kgf/㎥ and the resistance of freezing and thawing was not good either.

  • PDF

An Experimental Study on the Mechanical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 역학적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.5-8
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on mechanical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200$^{circ}C$, the high strength concrete show degradation at 100$^{circ}C$ and restoration at 200$^{circ}C$. The high strength concrete show elastic deformation at 20 - 200$^{circ}C$. Second, between 300 to 400$^{circ}C$, the mechanical properties of the high strength concrete which are exposed to fire show $75\~95\%$ as compared to the original properties because the thermally expanded ingredients of concrete, aggregates and cement paste, etc. Finally, beyond 600$^{circ}C$, the high strength concrete shows $75\~80\%$ reduction in thermal properties as compared to the normal concrete in the range of 600 to 800$^{circ}C$ and it shows $10\~30\%$ as compared to the original properties.

  • PDF

An Experimental study on the Fundamental Properties of Restorative Mortar Spread with Liquefied Antibiotics for Repair of Sewer Concrete (액상 항균제를 도포한 단면복구용 모르타르의 기초물성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae Bong;Cho Bong-Suk;Kim Jae-Hwan;Lee Byoung-Ky;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.305-308
    • /
    • 2005
  • The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and disaggregation of concrete. The purpose of this study is to estimate the antibacterial performance of antibiotics and the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the fundamental properties of restorative mortar spead with antibiotics. Also, testing items such as bonding strength, abrasion contents, contents of water absorption, contents of air permeability was tested to estimate the fundamental properties in this study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And bonding strength of restorative mortar spread with antibiotics was similla to that of plain mortar. But, resistance to abrasion, water absorption and air permeability of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

Separation of Recycled Aggregates from Waste Concrete by Heavy Medium Separation (폐콘크리트에서 중액선별(重液選別)을 이용한 재생골재(再生骨材)의 선별(選別))

  • Lee, Myung-Gyu;Kwon, Ki-O;Gayabazar, Ganbileg;Kang, Heon-Chan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2007
  • The recycled aggregates produced from waste concrete by crushing and granularity adjusting processes only can't be used for structural aggregates because they display low density and high abrasion rate by including lots of mortar and cement paste. However, the recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

A quantitative measurement of concrete air content using image analyses

  • Hwang, C.L.;Peng, S.S.;Wang, E.;Lin, S.H.;Huang, S.L.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.239-247
    • /
    • 2010
  • A proposed topology method is introduced to measure the air content of fresh cement paste and hardened concrete. The method takes advantage of chromatographic analysis in void areas that are highlighted using different color schemes and later calculated using built-in computer software. The air content measured by the topology method is compared with results obtained from the conventional ASTM methods. It is concluded that the proposed method is reliable, and costs less and is easier to operate compared with the ASTM methods. In addition, 3 dimensional pore models can be created using image post-processing techniques. The proposed method helps researchers in understanding the formation and existence of concrete pores. This paper reports a detailed test program demonstrating the standard operating procedure used for the proposed method and presents a comparison of results between the proposed method and conventional ASTM Specifications. It is also concluded that the air content increases with increasing size of pores and increasing percentage of coarse aggregates.