• Title/Summary/Keyword: Cement paste

Search Result 752, Processing Time 0.021 seconds

Evaluation of Neutron Shielding Performance of Polyethylene Coated Boron Carbide-Incorporated Cement Paste using MCNP Simulation (MCNP 시뮬레이션을 통한 폴리에틸렌 코팅 탄화붕소 혼입 시멘트 페이스트의 중성자 차폐 성능 평가)

  • Park, Jae-Yeon;Jee, Hyeon-Seok;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.114-115
    • /
    • 2018
  • To develop an effective shielding material for spent fuel that emits fast neutrons is necessary. In this study, thermal neutron and fast neutron shielding performance of polyethylene coated boron carbide-incorporated cement paste was quantitatively analyzed by Monte Carlo N-Particle transport code (MCNP) simulations. As the results of the simulations, fast neutrons were effectively shielded through large quantity of hydrogen and boron elements in polyethylene and boron carbide.

  • PDF

Characteristics of Mass Reduction Rate of Cement Paste Hardened to High Temperature Conditions by TGA (TGA를 이용한 고온 조건에 노출된 시멘트 페이스트 경화체의 질량감소율 특성)

  • Ji, Woo-Ram;Shin, Ki-Don;Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.169-170
    • /
    • 2018
  • In this study, TGA analysis of hardened cement paste with fire damage was performed. The mass reduction rate of 600 ℃ specimens was about 22 ~ 25%, and the sample of 800 ℃ showed the mass loss rate of 9 ~ 13%. As the target temperature and hold time increased, the mass reduction rate decreased. As the depth increased, the mass reduction rate decreased.

  • PDF

Effect of Water absorbing Curing Time on Compressive Strength of Ultra High Strength Cement Paste (포수양생 시간이 초고강도 시멘트 페이스트의 압축강도에 미치는 영향)

  • Jang, Jong-Min;Jang, Hyun-O;Choi, Hyun-Kuk;An, Dong-Hee;Kim, In-Soo;Lee, Han-Seun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.107-108
    • /
    • 2017
  • The purpose of this study is to derive the optimum water absorbing curing time. It was found that the cement paste compressive strength was increased with the water absorbing ratio up to 40%, but the compressive strength was slightly lower when the catch level was over 50%. It is considered that the superfluous water did not react and remained in the inside of the specimen, causing microcracks in the inside due to the high temperature curing, resulting in a decrease in strength. Therefore, it is considered that the optimum catcher curing time for improving the strength through catcher curing is when the catcher reaches 40%.

  • PDF

An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength

  • Khorshidi, N.;Ansari, M.;Bayat, M.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.649-657
    • /
    • 2014
  • In this paper, effects of magnetic water on different properties of cement paste including fluidity, compressive strength, time of setting and etc, has been studied in concrete laboratory of Sahand University of Technology. For production of magnetic water, three devices including an AFM called device(made in UAE), a device marked AC(made in Germany) and finally a device was designed and made in Concrete Laboratory of Sahand University of Technology) have been used. The results show that, intensity and direction of magnetic field, velocity and time of water passing through magnetic device, and amount and type of Colloidal particles have direct effects on properties of magnetic water and using such a water in making cement paste, increases its fluidity and compressive strength up to 10%.

The Properties of Cement Paste Mixed with Carbon Nanotubes Dispersion Solution (탄소나노튜브 분산용액을 혼입한 시멘트 페이스트의 특성 변화)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.201-202
    • /
    • 2021
  • Currently, the domestic construction industry is trying to expand the range of building materials due to overload of growth. In particular, several studies are being conducted to make up for the weakness of building materials by solving problems such as reduction of tensile strength and brittle behavior of concrete. Among them, efforts to maximize the use of carbon nanotubes (CNT) that has excellent mechanical and electrical conductivity properties are continuing. However, CNT is hydrophobic and have a strong Van der Waals force between particles, making it difficult to obtain an effective dispersion state. Therefore, in this study, various kinds of surfactants like DOC (Sodium Deoxycholate), PVP (Polyvinylpyrrolidone), and PCE (Polycarboxylate ester) were added to improve the dispersibility of CNT, and analyzed the changes in the properties of the cement paste mixed with them.

  • PDF

The Fundamental Study on the decision of the weight of water required to cement hydration (시멘트 페이스트의 수화수량 정량화에 관한 기초적 연구(구조 및 재료 \circled2))

  • 이준구;박광수;김석열;장문기;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.266-271
    • /
    • 2000
  • This study was performed to find out how much water the cement hydration reaction need. It is real situation that it is difficult to find out the amount of chemical combined water with stoichiometric chemical reaction form. Because several variation occurred during hydration reaction it's not easy to divide water which used at cement paste mixture. In this study high temperature(105$^{\circ}C$) dry method was used to divide evaporable water and non-evaporable water. The last is combined water chemically and some free water absorbed to products of hydration physically. The test was processed with variation of water cement ratio from 10% to 45% with 5% intervals. The weight of cement paste specimens were measured after dry for 72hours at each checking time(0.5, 1, 3, 5, 10, 24, 48, 72, 168hour). In this study some conclusions such as follows were derived. Firstly, Pure combined water contents required at cement hydration result in 23.3percent of the weight of cement. Secondly, The sufficient mixing water needed to fully hydrated cement result in about 40∼45percent of weight of cement. That is, gel pores water could be about 16.7∼21.7percent of weight of cement.

  • PDF

Effect of 50 ㎛ class granules on the Injection Behavior of Brushite Bone Cement Prepared via Pre-dissolution Route

  • Mun, Da Hye;Lee, Sang Cheon;Oh, Kyung-Sik
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.468-476
    • /
    • 2020
  • The bone cement used for vertebroplasty must be sufficiently injectable. The introduction of granules reduces the amount of liquid required for liquefaction, implying that higher fluidity is achieved with the same amount of liquid. By employing β-tricalcium phosphate granules with an average diameter of 50 ㎛, changes in injectability are observed based on the paste preparation route and granular fraction. To obtain acceptable injectability, phase separation must be suppressed during injection, and sufficient capillary pressure to combine powder and liquid must work evenly throughout the paste. To achieve this, the granules should be evenly distributed. Reduced injection rates are observed for dry mixing and excessive granular content, owing to phase separation. All these correspond to conditions under which the clustered granules weakened the capillary pressure. The injected ratio of the paste formed by wet mixing displayed an inverted U-type shift with the granular fraction. The mixture of granules and powder resulted in an increase in the solid volume fraction, and a decrease in the liquid limit. This resulted in the enhancement of the liquidity, owing to the added liquid. It is inferred that the addition of granules improves the injectability, provided that the capillary pressure in the paste is maintained.

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.