• Title/Summary/Keyword: Cement Weight

Search Result 751, Processing Time 0.023 seconds

Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure (고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구)

  • Cho, Hyun Myung;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

A Study on the Resistance of Chemical Attack for Cement Mortar (시멘트 모르터의 내약품성에 대한 고찰)

  • 문한영;김성수;유정훈;윤희경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.183-188
    • /
    • 1996
  • The durability of concrete structures decrease due to deterioration of concrete when they are constructed in marine or pollutional environments. In this study, the mortar specimens made from the five different types of cement were immersed in artificial seawater and four kinds chemical solution, and were measured the change of compressive strength and weight. The results show that the longer the immersed days are, the more the compressive strength reduction is. It has been remarked that the resistance of slag cement and ground granulated blast-furnace slag is excellent in chemical attack.

  • PDF

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

The Effects of Sepiolite on the Properties of Portland Cement Mortar (해포석이 시멘트 경화체의 특성에 미치는 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Kim, Young-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.443-452
    • /
    • 2008
  • Shrinkage crack is a major concern for cement materials, especially for flat structures such as Korean On-Dol floor system, flooring for garages, and wall. One of the methods to reduce the adverse effects of shrinkage cracking is to reinforce cement materials with shot randomly distributed fibers. The efficiency of inorganic fibrous material to arresting cracks in cementitious composites was studied. Cement materials reinforced with five different qualities of inorganic fibrous material were tested. Contents of inorganic fibrous material were 1.0 kg, 1.5 kg, 2.0 kg, 2.5 kg, 3.0 kg by weight of cement mortar and C : S types of cement mortar were 1:3 and 1:4. W/C were 60% and 80%. Cement mortar of inorganic fibrous material reinforcement showed an ability to reduce the crack width and crack length significantly as compared to unreinforced cement mortar. $40%{\sim}60%$ drop in shrinkage crack of 1:4 cement mortar with 1.5 kg over was observed.

Fluidity Changes of Cement Paste added Superplasticizer and Inorganic Fine Powders for Cement Admixture (고유동화제와 시멘트 혼화용 무기미분체가 첨가된 시멘트 페이스트의 유동성 변화)

  • 김도수;정흥호;박병배;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.751-759
    • /
    • 2000
  • Effects of the dosage change, from 0 to 2.0 wt% based on cement weight, of naphthalenic (NSF) and polycarboxylic(NT-2) superplasticizers, on the fluidity of cement paste substituted by 10 wt% II-anhydrite and fly ash respectively as well as II-anhydrite and fly ash itself were investigated. Dispersion properties between particles in suspension were investigated by zeta potential test. Initial fluidity and slump loss in the paste system were observed through mini-slump and apparent viscosity changes with elapsed time. Zeta potential on the particle surface was a tendency to increase according to increasing of NSF dosage. Especially, zeta potential of fly ash has the highest value among all particles equivalent to NSF dosage. In the fluidity of cement paste substituted by inorganic particles, the specimen with substitution of 10 wt% II-anhydrite and fly ash for cement was more effective than cement itself to improve initial fluidity and retain stable fluidity of cement paste. In addition, effect of NT-2 and NSF to improve the fluidity of cement paste, addition of 1.0 wt% NT-2 was more effective than 1.5wt% NSF.

  • PDF

A Study on the Engineering Characteristics of PVA (Polyvinyl Alcohol) Fiber-Cement-Soil Mixtures (PVA 시멘트 혼합토의 공학적 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Yoo, Kyeong-Wan;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • This study aimed to investigate the engineering characteristics of PVA fiber-cement-soil mixture used to prevent or reduce brittle failure of cement-soil mixtures due to the tensile strength increase from the addition of a synthetic fiber. The engineering characteristics of PVA fiber-cement-soil mixtures composed of PVA fiber, soil, and a small amount of cement was analysed on the basis of the compaction test, the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The specimens were manufactured with soil, cement and PVA fiber. The cement contents was 2, 4, 6, 8, and 10%, and the fiber contents was 0.4, 0.6, 0.8, and 1.0% by the weight of total dry soil. To investigate the strength characteristics depending on age, each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of PVA fiber-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The basic data were presented for the application of PVA fiber-cement-soil mixtures as construction materials.

The Study on Compressive-Strength Property of the Aerated Concrete using Glass Fiber by Mixing Ratio (유리섬유 혼입 기포콘크리트의 배합변화에 따른 ,압축강도 특성에 관한 연구)

  • Her Jae-Won;Kim Hyo-Youl;Lim Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study was to analyze the compression strength research by aerated concrete as mixing ratio This Study used foaming-agent and produced aerated concrete by pre-foam way that is used in construction site. An experiment changes unit cement amount, w/c and the glass fiber mixing rate and 'measured capacity change, unit capacity weight and compressive strength. The results obtained from experimental study are as following; Research to reduce unit capacity weight in condition more than unit cement amount 500kgf is considered should be gone side by side. The highest compressive strength result appeared in aerated concrete that cement amount 600kgf and w/c ratio $45\%$, $50\%$. compressive strength was increased maximum $34%$ when glass fiber $0.7\%$ addition cause by coherence enlargement to enlargement of cement paste and glass fiber addition per unit volume

  • PDF

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.