• Title/Summary/Keyword: Cement Weight

Search Result 746, Processing Time 0.029 seconds

The Fundamental Study on the decision of the weight of water required to cement hydration (시멘트 페이스트의 수화수량 정량화에 관한 기초적 연구(구조 및 재료 \circled2))

  • 이준구;박광수;김석열;장문기;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.266-271
    • /
    • 2000
  • This study was performed to find out how much water the cement hydration reaction need. It is real situation that it is difficult to find out the amount of chemical combined water with stoichiometric chemical reaction form. Because several variation occurred during hydration reaction it's not easy to divide water which used at cement paste mixture. In this study high temperature(105$^{\circ}C$) dry method was used to divide evaporable water and non-evaporable water. The last is combined water chemically and some free water absorbed to products of hydration physically. The test was processed with variation of water cement ratio from 10% to 45% with 5% intervals. The weight of cement paste specimens were measured after dry for 72hours at each checking time(0.5, 1, 3, 5, 10, 24, 48, 72, 168hour). In this study some conclusions such as follows were derived. Firstly, Pure combined water contents required at cement hydration result in 23.3percent of the weight of cement. Secondly, The sufficient mixing water needed to fully hydrated cement result in about 40∼45percent of weight of cement. That is, gel pores water could be about 16.7∼21.7percent of weight of cement.

  • PDF

A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete (폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구)

  • 소형석;소승영;소양섭;박종호;탁재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

Effect of abutment neck taper and cement types on the amount of remnant cement in cement-retained implant restorations: an in vitro study

  • Park, Yeon-Hee;Kim, Kyoung-A;Lee, Jung-jin;Kwon, Tae-min;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.162-172
    • /
    • 2022
  • PURPOSE. The present study aims to analyze the effect of abutment neck taper and types of cement on the amount of undetected remnant cement of cement-retained implant prostheses. MATERIALS AND METHODS. Three neck taper angles (53°, 65°, 77°) and three types of cement (RMGI: resin-modified glass ionomer, ZPC: zinc phosphate cement, ZOE: zinc oxide eugenol cement) were used. For each group, the surface percentage was measured using digital image and graphic editing software. The weight of before and after removing remnant cement from the abutment-crown assembly was measured using an electronic scale. Two-way ANOVA and Duncan & Scheffe's test were used to compare the calculated surface percentage and weight of remnant cement (α = .05). RESULTS. There were significant differences in remnant cement surface percentage and weight according to neck taper angles (P < .05). However, there were no significant differences in remnant cement surface percentage and weight on types of cement. No interaction was found between neck taper angles and types of luting cement (P > .05). The wide abutment with a small neck taper angle showed the most significant amount of remnant cement. And the types of luting cement did not influence the amount of residual cement. CONCLUSION. To remove excess cement better, the emergence profile of the crown should be straight to the neck taper of the abutment in cement-retained implant restoration.

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil (경량기포혼합토의 축변형율 - 체적변형율 관계)

  • 김주철;김병탁;윤길림;서인식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

A Study on the Thermal Insulation Property of Concrete Composites using Light-weight Aggregate (경량골재를 사용한 콘크리트 복합체의 단열성능에 관한 연구)

  • So, Seung-Yeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.93-100
    • /
    • 2004
  • In recent years, it has widely been studied on the light-weight composites for the purpose of the large space and thermal insulation of building structures. The purpose of this study is to evaluate the properties of light-weight composites made by binders as cement, resin and polymer cement slurry. The concrete composites are prepared with various conditions such as polymer-cement ratio, void-filling ratio, type of resin, filler content and light-weight aggregate content, tested for thermal conductivity. From the test results, the thermal conductivity of concrete composites with the binder of cement tends to decrease with increasing polymer-cement ratio, and to increase with increasing void-filling ratio. The thermal conductivity of concrete composites with the binder of resin are markedly affected by the light-weight aggregate content, type of resin and filler content. The composites made by polymer-modified concrete and polymer cement slurry have a good thermal insulation property. From the this study, we can recommend the proper mix proportions for thermal insulation Panel or concrete. Expecially. the thermal conductivity of concrete composites made by polyurethane resin is almost the same as that of the conventional expanded polystyrene resin.

Experimental investigation of the effect of the addition of Aerosil 200 nanoparticles on the water absorption of polymer concrete

  • A.M. Fattahi;Babak Safaei;Elham Moaddab;Zahra Pezeshki
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • In this work, the effect of the addition of Aerosil 200, an insulating resin applied in many industries, on the water absorption of cement plast mixture has been experimentally evaluated. First, the preparation stages of cement plast mixture was evaluated based on corresponding standards and then, the effect of the addition of Aerosil 200 nanoparticles (NPs) to cement plast mixtures with sand weight percentage range of 0-0.1% on the variation of water absorption properties was evaluated based on National Standard Institution of Iran 20185 for Concrete Flooring Blocks - Requirements and Test Procedures. Based on the obtained results, it could be found that excessive addition of NPs did not affect the physical properties of the final product. Water absorption percentage was increased in the weight percentage of cement. By the increase of the amount of Aerosil 200 NPs in the prepared cement plast mixture, the percentage of water absorption in weight percentage of sand was decreased. Cement plast with NPs presented significantly lower water absorption than that without NPs.

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF