• Title/Summary/Keyword: Cement Manufacturing

Search Result 383, Processing Time 0.025 seconds

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

Image and Phase Analysis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 사용한 저탄소형 시멘트의 조직 및 상분석)

  • Song, Hun;Shin, Hyeon-Uk;Lee, Jong-Kyu;Chu, Yong-Sik;Park, Dong-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Although the cement industry serves as the cornerstone of the construction industry by supplying one of its fundamental materials, it confronts new environmental challenges due to the problem of the $CO_2$ generated from raw materials and fuel used in the cement manufacturing process. Also, concrete structures can be decomposed and reused as construction materials. Simply in terms of the cyclic processing of $CO_2$, recycling waste concrete to manufacture recycled aggregate or recycling waste concrete powder, which is the material for cement can be considered optimally environment-friendly practices. This study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste concrete powder. From the research results, waste concrete powder is feasible to use to produce low carbon type recycled cement.

Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites (나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향)

  • Kim, Sun-Woo;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

Physical Properties of Foamed Concrete using Blast-Furnace Slag (고로슬래그 미분말을 혼입한 기포콘크리트의 물리적 특성)

  • Cho, Eun-Seok;Lim, Jeong-Jun;Song, Ha-Young;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.164-165
    • /
    • 2019
  • Light-weight foamed concrete using cement as a raw material consumes a lot of energy and generates $CO_2$ because of the high temperature firing process in the manufacturing process of cement. This study was carried out to evaluate the use of blast furnace slag through the properties analysis by substituting a certain amount of blast furnace slag as an industrial by-product as a substitute for cement. The experimental results showed similar characteristics to those of using only cement when the blast furnace slag fine powder was used in an appropriate amount. Therefore, if a certain amount of cement is replaced with blast furnace slag powder, it can maintain similar quality, reduce natural resources and energy consumption, and reduce carbon dioxide emissions.

  • PDF

Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing (TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향)

  • Liu, Jun-Xing;Li, Pei-Qi;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

Physical Properties of MiDF Cement Composites According to Manufacturing Conditions (제조 조건에 따른 MiDF 시멘트 복합체의 물리적 특성)

  • Park, June Hyoung;La, Jung Min;Kim, Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.138-139
    • /
    • 2021
  • The MiDF Cement Composite is a high-performance construction material with low defects that dehydrates surplus water through pressurization and minimizes air gap between particles. In other words, the performance expression of the MiDF cement complex is affected by pressurized conditions. Thus, this study analyzed the physical characteristics of MiDF cement complex according to the power and pressure of the ga-power and the time of application and intends to use it as a basic data for optimal mixing.

  • PDF

Studies on Manufacturing Possibility of Paper Sludge-Cement Boards (II) - Physical and Mechanical Properties and SEM Observation - (제지(製紙) 슬러지-시멘트보드이 제조가능성(製造可能성)에 관(關)한 연구(硏究)(II) - 물리(物理)·기계적(機械的) 성질(性質) 및 SEM 측정(測定) -)

  • Kim, Sa-Ick;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.37-45
    • /
    • 1994
  • The possibility of reusing the paper sludge as a raw material of composition board mixed with cement was investigated. For the measurement of physical and mechanical properties, wood coment board and sludge combinend cement boards were fabricated with the three weigh ratios of paper sludge 10 % (SI), 20 % (S II) and 30 % (S III) to cement weight. For adding the cement hardning, $CaCl_2$ was also added to each mixed paste with the ratio of 1 %, 3 % and 5 % to cement weight, respectively. Crystal formation in paper sludge-, wood-cement composites was observed by scanning electron microscope. The results were summarized as follows. 1. Density and partial compressive strength of each specimens were relatively high in the order of sludge I, sludge II, Korean pine, Italian poplar and sludge III, sludge I, Korean pine, sludge II, Italian poplar and sludge III. 2. The mechanical properties of sludge-cement boards (S I and II) were higher than that of wood-cement boards prepared with Korean pine and Italian poplar. But the mechanical properties of wood-cement boards were improved by the adding of $CaCl_2$. 3. Water absorption and thickness swelling were increased with increase of sludge content to cement weight. 4. In SEM observation, sludge-cement composites showed sufficiently formed crystals but wood-cement composites showed poorly formed crystals.

  • PDF