• Title/Summary/Keyword: Cement Manufacturing

Search Result 383, Processing Time 0.024 seconds

Experimental Study on Fundamental Quality Characteristics of Non-cement Repair Mortar Using High-volume Fly Ash Based on Potassium Magnesia Phosphate (마그네시아-인산칼륨 기반 하이볼륨 플라이애시 활용 무시멘트 보수 모르타르의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • This paper investigates the manufacturing and fundamental quality characteristics of potassium magnesia phosphate-based non-cement high-volume fly ash repair mortar. To derive the optimal mix for non-cement mortar, the manufacturing characteristics were evaluated based on the magnesia ratio, and the mortar manufacturing characteristics were assessed with the fly ash mixture. Additionally, the non-cement magnesia repair mortar was produced considering the effects of fly ash mixture and basalt fiber. The evaluation results determined the optimal mix of non-cement magnesia repair mortar, and the feasibility was examined through workability and fundamental quality assessments. The optimal magnesia ratio was found to be P:M 1:0.5, with W/B at 30 %. It was also confirmed that mixing FA and basalt fiber improves fiber dispersion and workability. Even with over 50 % FA mixture, the target strength was achieved within six hours, with a flow increase of up to 18 % and a flexural strength decrease of about 1-2 MPa.

Effect of cement space on marginal and internal fit of a zirconia core fabricated using by additive manufacturing (시멘트 공간이 적층 가공으로 제작한 지르코니아 하부구조물의 변연 및 내면 적합도에 미치는 영향)

  • Ji-Won Min;Se-Yeon Kim;Jae-Hong Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Purpose: The goal of this study was to determine the clinical acceptability of various cement space settings for the marginal and internal fit of a zirconia core manufactured using additive manufacturing. Methods: The maxillary right incisor served as the master model. After scanning the maxillary right incisor with a dental 3D (three-dimensional) scanner, the stereo lithography file was created using different cement space settings of 40, 120, and 200 ㎛ using computer-aided design software (Dental System 2018; 3Shape). The marginal and internal fit of the 3 groups were determined using the silicon replica technique. Measurement points were divided into the following three categories: margin, axial wall, and incisal. To ensure more accurate measurements, these three measurement points were divided into 8 points. The Shapiro-Wilk, one-way ANOVA, and Tukey's honestly significant difference test (for all tests α=0.05) were the statistical analyses that were included in the study. Results: The CS (cement space)-200 group had better marginal and internal fit than the CS-40 and CS-120 groups, and there were statistically significant differences at the marginal and incisal points, except for the axial wall points. CS-200 group, both marginal and internal fit were within 120 ㎛, which is the clinically acceptable value. Conclusion: This study suggests that a 200 ㎛ cement space setting is ideal for optimal marginal and internal fit of 3D-printed ceramic crowns.

Studies on Manufacturing Possibility of Paper Sludge- Cement Board (I) -Measurement of Inhibitory Index by Hydration Reaction- (제지(製紙) Sludge-Cement Board의 제조가능성(製造可能性)에 관(關)한 연구(硏究)(I) -수화반응(水和反應)에 의(依)한 경화장해지수측정(硬化障害指數測定)-)

  • Kim, Sa-Ick;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 1993
  • This experiment was carried out to investigate the reaction of hydration of paper sludge during the setting of portland cement in a paper sludge, wood-cement-water mixturte. The percentage of paper sludge per cement is 7.5%, 15%, 30% respectively. The result indicated that the sludge of 7.5% had the most effect on reaction of hydration, and the sludge of 15% had moderately inhibitory effect but there is still possibility to make sludge-cement board. Paper sludge of 30%, Pinus koraiensis Sieb. et Zucc and Populus euramericana Guinier were proved to have the worst inhibitory effect on cement hydration, so pretreatment will be needed before making board with paper sludge-cement mixture.

  • PDF

Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement (칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토)

  • Wu, Xuanru;Kunal Krishna, Das;Jang, Jeong Gook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF

Consideration of Cement Mineral Production Amount and Microstructure Chemical Distribution of Cement Clinker Using Coal Ash and Coarse Limestone (석탄재와 조립 석회석을 적용한 시멘트 클링커의 시멘트 광물생성량과 미세구조의 화학성분 분포 고찰)

  • Dong-Woo Yoo;Sung-Ku Kwon;Min-Seok Oh;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.364-372
    • /
    • 2023
  • By applying coarse-grained limestone and unprocessed coal ash as sintering raw materials for cement clinker, the microstructure and distribution of chemical components of cement clinker were compared and examined. Samples using coarse limestone as a raw material for cement clinker showed a decrease in sinterability compared to samples using reagent-grade raw materials. Samples using coal ash showed a tendency for some increase in sinterability. In samples using coarse limestone and coal ash, the formation of Belite was high at 1350 ℃. The conversion rate from Belite to Alite was high in the range of 1350~1450 ℃. Samples using coal ash showed stable formation of interstitial phase in the range of 1350 to 1450 ℃. The microstructure and chemical composition distribution of cement clinker sintered at 1350~1450 ℃ showed that all samples showed a form and composition distribution in which the calcium silicate phase and interstitial phase were clearly distinguished.

Exposure Assessment of Airborne Dusts in the Cement Manufacturing and Handling Industries (시멘트 제조·취급사업장에서 발생하는 공기 중 분진의 노출평가)

  • Bae, Hye Jeong;Sung, Eun Chang;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.390-397
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate concentrations in airborne total and respirable dusts in the cement manufacturing and handling industries. Methods: Fifty-three total dust and 42 respirable dustsamples were collected from 24 work places. Total dust samples were collected using a three-stage cassette. Respirable dust samples were collected using a cyclone equipped with a 37 mm, $5{\mu}m$ pore size PVC filter. Results: The geometric means of the dust concentrations were $0.10mg/m^3$ and $0.08mg/m^3$ in total dust and respirable dust, respectively. The Korean Occupational Exposure Limit($10mg/m^3$) was not exceeded, but the rate of exceeding the American Conference of Governmental Industrial Hygienist(ACGIH) Threshold Limit Value($1mg/m^3$) was 16.7%. Conclusion: When measuring the level of dust at cement manufacturers, the airborne concentration of respirable dust should be evaluated. In order to protect the health of workers exposed to cement dust, it is necessary to actively consider strengthening the Korean Occupational Exposure Limit.

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.

Leaching Properties of Water-Soluble Hexavalent Chromium by Manufacturing Condition of Cement Clinker (클링커 제조 조건에 따른 수용성 6가 크롬 용출 특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.679-684
    • /
    • 2011
  • One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The purpose of the present study was to investigate leaching properties of water-soluble hexavalent chromium by different manufacturing conditions of cement clinker. Raw materials were prepared to add different $SiO_2$, $Al_2O_3$ and $Fe_2O_3$ sources. After the raw materials, such as limestone, sand and clay, iron ore was pulverized and mixed, and the raw meal was burnt at $1450^{\circ}C$ in a furnace with an oxidizing atmosphere. Leaching of soluble hexavalent chromium showed a tendency to decrease with an increasing LSF and IM. However, leaching of soluble hexavalent chromium increased with an increasing S.M. Alkali contents of iron source minerals is closely related to the leaching properties of soluble hexavalent chromium. Green sludge has the highest content of alkali added; leaching of water-soluble hexavalent chromium was mostly high. In order to reduce the water-soluble hexavalent chromium in cement, reducing the alkali content in raw materials is important.

Application of zeolite/kaolin combination for replacement of partial cement clinker to manufacture environmentally sustainable cement in Oman

  • Abdul-Wahab, Sabah A.;Hassan, Edris M.;Al-Jabri, Khalifa S.;Yetilmezsoy, Kaan
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • This study was conducted to explore the optimum proportion of zeolite and zeolite-kaolin as additives to cement clinker and gypsum samples, while maintaining the strength properties of produced environmentally sustainable cements. According to the British standard method, zeolite was added to cement clinker in proportions of 5-12% and 10-12% by weight, respectively, in the preparation of samples of zeolite-containing cement and zeolite-kaolin-based cement. Kaolin was used as a second additive as 10-20% of the total weight. The compressive strength tests were performed on base cement samples according to a standard procedure given in ASTM C109 Compressive Strength of Hydraulic Cement. These values were compared with those of the reference sample and the Omani allowable limits. The results indicated that the best compressive strength values were obtained with 88% cement clinker, 5% gypsum, and 7% zeolite for the zeolite-containing cement. Quantities of 70% cement clinker, 5% gypsum, 10% zeolite, and 15% kaolin gave the best results for zeolite-kaolin-based cement, resulting in a substitution of than 25% cement clinker. The study concluded that the partial cement clinker replacement using zeolite/kaolin combination may have a great influence on the reduction of $CO_2$ emission and energy saving in cement manufacturing.

The CO2 Emission in the Process of Cement Manufacture Depending on CaO Content (시멘트 생산과정에 따른 CaO 함량과 CO2의 발생량)

  • Kim, Sang-Hyo;Hwang, Jun-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.365-370
    • /
    • 2013
  • In this study, contents of limestone in cement manufactured by six domestic plants for Portland cement were investigated in terms of the strength and its relation to the $CO_2$ emission due to limestone material and its physical properties in cement manufacturing process. the relationship among CaO content, compressive strength, and $CO_2$ emission was surveyed for the limestone quantity in decomposition reaction and the loss of limestone quantity contained in each cement. As a result of $CO_2$ emission calculation for unit cement, it was found that the $CO_2$ emission due to decomposition of limestone was occupied 67% of total emission quantity. Furthermore, there was a difference in $CO_2$ emission quantity depending on the cement manufacturing process management. Also, it was shown that fossil fuel usage and material loss had a major influence as main factors of $CO_2$ emission. An increase in the CaO content in cement resulted in an increase in the compressive strength. On the contrary, CaO content and compressive strength were reduced with the growth of loss quantity of limestone. It was verified that the material and process management were more effective than CaO yield in cement manufacturing for $CO_2$ emission with the growth of $CO_2$ emission quantity. Pozzolanic materials such as PFA and GGBS in concrete mix affected the price, $CO_2$ emission and development of strength of concrete.