• Title/Summary/Keyword: Cellulose fiber

Search Result 583, Processing Time 0.027 seconds

Effect of Stretching on Cellulose Fiber Swelling in Alkali Aqueous Solutions (알칼리수용액안에서 셀룰로오스섬유가 팽윤할 때 장력이 미치는 영향)

  • 최철호
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.91-96
    • /
    • 1992
  • The crystalline character of NaOH and KOH-cellulose complex having different tension ratio was studied using X-ray diffraction analysis. Cellulose crystalline lattices in tension alkali treatment cotton were identified by measuring and indexing the 101, 101, and 002 reflections. According as alkali treatment tension ratio increased on, cellulose gave rise to the formation of I rather than cellulose II. It seemed that a part of the fine structure of cellulose increased orientation with antiparaell and parallel chain crystal structure. The high tension ratio alkali treatment cotton resulted in lower dye sorption and in higher breaking strength and crease recovery.

  • PDF

The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed (볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준)

  • Choi, Yoon-Hee;Kim, Myeong-Sook;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.320-325
    • /
    • 1994
  • These studies were conducted to investigate the chemical composition changes in in vitro digestibility for the improvement of nutritive value of rice straw by alkaline hydrogen peroxide. The content of neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose and lignin in rice straw was decreased with higher level of $H_2O_2\;(pH 11.5)$. The content of ADF, cellulose and ash of the rice straw washed after $H_2O_2\;(pH 11.5)$ treatment tended to be increased but NDF, hemicellulose and lignin were decreased with higher concentration of $H_2O_2\;(pH 11.5)$. In the rice straw washed after alkaline hydrogen peroxide treatment the decomposition of cellulose and lignin was effective in $pH\;11.5{\sim}12.5$, in smaller cutting size and $55^{\circ}C$. The in vitro organic matter digestibility was increased with higher $H_2O_2$ concentration and smaller cutting size of rice straw.

  • PDF

In Vitro and In Vivo Physiological Characteristics of Dietary Fiber from By-product of Aloe vera Gel Processing (알로에 베라 유래 식이섬유의 In Vitro 및 In Vivo 생리기능 특성)

  • Baek, Jin-Hong;Cha, Tae-Yang;Heo, Jin-Chul;Lee, Sang-Han;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.173-182
    • /
    • 2010
  • A fiber fraction (Aloe cellulose), the by-product obtained from Aloe vera gel processing was freeze dried and investigated for in vitro glucose/ bile acid retarding effects of powdered sample (100 mesh) comparing with commercial $\alpha$-cellulose as a reference sample. We also examined the effectiveness of physiological functionality such as the antiobesity and anti-constipation on Sprague-Dawley (SD) rat. The Aloe cellulose powders during in vitro dialysis experiment for 2 hours exhibited the glucose and bile acid retarding index of 20.32-35.2% and 53.13-28.30%, respectively. Especially, freeze dried aloe cellulose showed the 2.5 and 1.2-6 times higher effect on in vitro glucose and bile acid retardation than those of $\alpha$-cellulose. These relatively good retarding effects on glucose and bile acid diffusion suggest a potential of preventing from diabetes and arteriosclerosis of some extent. Also, the results from animal experiments on SD rats fed a high-fat diet for 4 weeks suggested that Aloe cellulose might be used as a novel dietary fiber showing an effective anti-obesity and anti-constipation effect.

Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS) (TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과)

  • Park, Sujin;Lee, Jaewoong;Kim, Sam Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

Characteristics of the Leaf Fiber Plants Cultivated in Korea (국내 재배 엽맥섬유의 특성에 관한 연구)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.711-720
    • /
    • 2009
  • Leaf fibers have many good properties; they are strong, long, cheap, abundant and bio-degradable. Since they, however, contain a great quantity of non-cellulose components, they have been used for the materials of mats, ropes, bags and nets rather than those of clothing. In this study, we investigated the characteristics of leaf fibers in order to promote the use of leaf fibers for the materials of clothing as well as develop the high value-added textile fibers. Leaf fiber plants including New Zealand Flax, Henequen and Banana plant, which have various nature and shape, were used. New Zealand Flax and Henequen leaves were cut from lower part of plants. Banana leaves and pseudo-stems were peeled and cut from the stem of Banana plants. First, the thin outer skins like film of leaves, veins and stems were removed before retting. The chemical retting had been processed for 1hour, at 100 in 0.4% $H_2SO_4$ aqueous solution(liquid ratio 50:1). Then, the retted leaf fibers had been soaked for 1hour, at room temperature in 0.5% NaClO solution(v/v) to remove the miscellaneous materials. We investigated the physical characteristics of three leaf fibers including the transversal and longitudinal morphology, the contents(%) of pectin, lignin and hemicellulose, the length and diameter of fibers, the tensile strength of the fiber bundles, and the fiber crystallinity and the moisture regain(%). The lengths of fiber from three leaf fibers were similar to their leaf lengths. The fiber bundles were composed of the cellulose paralleled to the fiber axis and the non-cellulose intersecting at right angle with the fiber axis. The diameters of New Zealand Flax, Henequen and Banana fibers were $25.13{\mu}m$, $18.16{\mu}m$ and $14.01{\mu}m$, respectively and their tensile strengths were 19.40 Mpa, 32.16 Mpa and 8.45 Mpa, respective. The non-cellulose contents of three leaf fibers were relatively as high as 40%. If the non-cellulose contents of leaf fibers might be controlled, leaf fibers could be used for the materials of textile fiber, non-wovens and Korean traditional paper, Hanjee.

Predicting the Capability Curve of Cellulose Acetate Filters (셀롤로오스 아세테이트 필터의 특성곡선 예측)

  • Kim Soo-HO;Lim Sung-Jin;Kim Chung-Ryul;Shin Chang-Ho;Rhee Moon-Soo;Kim Jong-Yeol
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2005
  • A theoretical model for predicting the capability curve of cellulose acetate filter is derived. The pressure drop is expressed as a function of the filter dimensions, the tow fiber characteristics, the filter weight, the fluid flow rate, and a filter fiber factor. Where, the filter fiber factor is affected by the distribution of the tow fibers within the filter, the relative orientations of the tow fibers, and their cross-sectional shapes. The minimum and maximum fraction of solids in capability curves determined from experimental data. Also, the filter fiber factor is expressed as a function of the filter length, tow fiber length, and tow fiber diameter. Capability curves predicted by the suggested model in this work correspond well with capability curves by experimental data.

Preparation of Regenerated Cellulose Fiber from the Cellulose Carbonate Derivative(VI. Degree of substitution and estimation of solubility) (셀룰로오스 카보네이트 유도체로부터 재생 셀룰로오스 섬유의 제조(VI. 셀룰로오스 카보네이트의 치환도 및 용해도 평가))

  • 오상연;류동일;신윤숙;김환철;김학용;정용식
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.299-300
    • /
    • 2003
  • 본 연구자들은 이산화탄소($CO_2$)에 의한 셀룰로오스 카보네이트의 제조 및 재생 셀룰로오스 섬유 제조에 대한 몇몇 기초 연구성과를 발표한 바 있다[1, 2]. 이번 연구에서는 이산화탄소와의 반응을 통해 제조된 셀룰로오스 카보네이트 유도체의 치환도 변화에 따른 용해성을 평가하고 상그림표를 작성하였다. (중략)

  • PDF

High Tenacity Cellulosic Fiber from Liquid Crystal Solution of Cellulose Triacetate (셀룰로오스 트리아세테이트 액정용액으로 부터 고강도 셀룰로오스 섬유 제조에 관한 연구)

  • 홍영근
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.44-48
    • /
    • 1994
  • Cellulose triacetate(CTA) liquid crystal solutions obtained via dissolution of CTA in solvent mixture of triflucroacetic acid and methylene chloride were spun and saponified in various chemicals. Among chemicals, methanol/sodium hydroxide mixture endowed highest tenacity as well as modulus to regenerated cellulosic fiber and the fiber thereof showed Cell I or Cell IV morphology, or mixed morphology of Cell I and IV.

  • PDF

Effect of Dietary Fiber and Fat on Tumor Incidence and Cell Proliferation of Colonic Mucosa in DMH-Treated Rats (Dimethylhydrazine으로 처리한 쥐에서 식이섬유소와 지방종류가 대장의 종양발생율과 세포증식에 미치는 영향)

  • 최주선
    • Journal of Nutrition and Health
    • /
    • v.31 no.4
    • /
    • pp.697-707
    • /
    • 1998
  • This study was designed to observe the effect of dietary fiber and fat on colon tumor incidence and cell proliferation. Male Sqraue Dawley rats(n=225) at 7 weeks of age, were divided into 3 groups depending on the type of fat b(beef tallow, corn oil and DHA-rich fish oil) and each group was again divided into 3 groups depending on type of fiber(fiber-free, perctin and cellulose) . The experimental diet containing dietary fat at 15%(w/w) and fiber at 6%(w/w) levels was fed for 25 weeks. At the same time, each rats was intramuscularly injected with DMH two times a week for 6 weeks to geive total dose of 180mg/kg body weight. Cell proliferation was measured by in vivo incroporation of bromodeoxyuridine (BrdU) into DNA. Fish oil decreased the tumor incidence (9.67%) compared with beef talow (33.39%) and corn oil (21.21%). Tumor incidence was decreased in all groups that fed cellulose (11.67%) compared with those of fiber-free(21.74%) and pectic(19.70%). Most of tumors was distributed at the site of the distal colon. The rats fed both fish oil and cellulose significantly decreased th enumber of tumors and tumor incidence compared to other groups. Fish oil was more effective in preventing cell prolofieration by decreasing crypt length and labeling index(LI) compared with beef tallow(p<0.05). Cell proliferation in distal colon was more developed to the upper part of the crypt compared to proximal colon. Overall tumor incidence and cell proliferation were more affected by dietary fat. But the effect of dietary fiber was different depending on type of fat in the experimental diet. These results suggest that a DHA -rich fish oil may has more decisive effect in inhibiting the cell proliferation in colon.

  • PDF